(3.238.186.43) 您好!臺灣時間:2021/03/05 22:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:謝豐
研究生(外文):Feng Hsieh
論文名稱:量化電流調整與干擾觀測器在音圈馬達及撓性機構的高精密位置控制
論文名稱(外文):High-precision Position Control of Moving Coil motor and Flexure mechanism Using Quantized Current Regulator and Disturbance Observer
指導教授:余祥華
指導教授(外文):S.H. Yu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:123
中文關鍵詞:單軸撓性機構線性音圈馬達
外文關鍵詞:single-axis flexure mechanismlinear voice coil motor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:219
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文為定位控制,將採用線性音圈馬達來推動單軸撓性機構,以解決不必要非線性問題。然後,藉由量化電流調節器已達到高效率強健變頻控制並設計出具有低通濾波器之干擾估測以解決系統內部參數變動項的影響,再經由模擬測試分析證明,提出的混合式控制方法具有同時控制音圈馬達電流與撓性機構位置定位的優勢,並且利用傳統脈波寬度調變的PI電流控制器與積分型式的順滑模態位置控制分別對量化電流調節器和干擾估測器做模擬比較分析。最後利用類比電路實現出來。
The position control has played an important role in high-tech industries. For example, we hope the control performance fast and precisely in the biomedical industry or high-speed precision machinery. However, the high-precision positioning platform will encounter backlash, friction, hysteresis ... and so on. Therefore, this paper will use the linear voice coil motor to drive single-axis flexure mechanism, to solve the nonlinear problem unnecessarily. Then, the quantized current regulator has been reached by high efficiency robust frequency control and to design with a low-pass filter of the interference within the system parameter estimation to reduce the impact of changes in items, and then by the simulation test analysis showed that the proposed hybrid control method has simultaneous control of voice coil motor current and the flexure mechanism targeting the advantages of location, and the use of traditional pulse-width modulation of the PI current controller with integral type of smooth position control mode, respectively quantized current regulator and the disturbance estimator to do a comparative analysis of simulation . Finally the use analogies full the bridge electric circuit, several logic and the operational amplifier realizes the quantification current regulator.
目錄

摘要(中) i
摘要(英) ii
目錄 iii
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 3
1.2 章節內容 9
第二章 音圈馬達與撓性機構 10
2.1 音圈馬達簡介 10
2.2 撓性機構簡介 14
2.3音圈馬達與撓性機構數學模型 16
2.4系統模擬與性能測試 18
第三章 控制器的設計 24
3.1順滑模態量化電流控制 25
3.1.1動態系統之順滑模態控制. 25
3.1.2 W1與W2的選取. 29
3.1.3音圈馬達與撓性機構之量化電流調整器的設計31
3.2干擾估測之強健控制器設計 35
3.2.1參數不確定性之位置控制. 36
3.2.2利用RIC建構干擾估測器. 38
3.2.3低通濾波器Q(s)之設計. 42
3.3逆向步進控制器設計 44
3.4無感測狀態回授與順滑模態觀測器之位置控制47
3.4.1順滑模態觀測器的設計 48
3.4.2二自由度狀態回授控制器設計 52
第四章 控制器的模擬分析 54
4.1量化電流調節器的模擬分析 54
4.1.1測試內迴路W2低通濾波器 54
4.1.2測試內外迴路低通濾波器 56
4.2量化電流控制器結位置控制模擬擬分析 64
4.2.1量化調節器結合干擾估測模擬分析 64
4.2.2量化調節器結合逆向步進器位置控制之模擬分析70
4.2.3量化調節器結合干擾估測之PI位置控制模擬分析73
4.3無感測控制模擬擬分析 77
4.3.1順滑模態觀測器的模擬分析 77
4.32二自由度狀態回授控制器的模擬分析 83
第五章 實驗架構與結果 85
5.1系統開迴路的測試架構 85
5.2量化電流控制器硬體架構 89
5.2.1變流器的基本架構 90
5.2.2切換邏輯電路 92
5.2.3量化電流控制硬體實現 94
5.3量化電流控制器實驗測試 99
第六章 結論與未來方向 104
6.1結論 104
6.2未來改進與方向 105
參考文獻 107
參考文獻

[1]謝文軒, “主動式隔震平台之控制器設計,” 台灣科技大學碩士論文, 2005
[2]蘇雅玲, “氣靜壓軸承式氣壓缸及定位平台設計與控制之研究,” 成功大學碩士論文, 2005
[3]H-H. Pham, I-M. Chen and H-C. Yeh, “Micro-
motionselective-actuation XYZ flexure parallel mechanism design and modeling,” Journal of Micromechatronics, vol.3, no.1. pp. 51-73, 2005.
[4]X. Tang, I-M. Chen,and Q.Li, “Design and onlinear Modeling of a large-displacement XYZ flexure parallel mechanism with decoupled with decoupled kinematic structure,” Review of Scientific Instruments, vol.77, pp. 115101-115101-11, 2006.
[5]R. H. A.Hensena, M . J. G. van de Molengraft,M. Steinbuch, “Friction induced hunting limit cycles A comparison between the LuGre and switch friction model,” Automatica, vol.39,pp. 2131-2137, December 2003.
[6]C-C. Cheng, C-Y. Chen and Chiu,G. T.-C, “Predictive control with enhanced robustness for precision positioning in frictional environment,” IEEE/ASME Transactions on Mechatronics, vol.7,no.3. pp. 385-392, 2002.
[7]J. W. Ryu, D.G.Gweon and K. S. Moon, “Optimal design of a flexure hinge based XYθ wafer stage,” Precision Engineering, vol.21, pp. 18-28, 1997.
[8]J. W. Ryu, S-Q. Lee, D-G. Gweon, K. S. Moon, “Inverse kinematic modeling of a coupled flexure hinge mechanism,” Mechatronics, vol.9, pp. 657-674, 1999.
[9]M. Chen,C. Jou, Z. Guo, “Adaptive Sliding Mode Controller Apply to a High-precision Positioning Platform,” Chinese Control Conference, pp. 624 - 628, 2008.
[10]S. Nundrakwang, T. Benjanarasuth, J. Ngamwiwit and N. Komine, “Hybrid Controller for Swinging up Inverted Pendulum System,” Information, Communications and Signal Processing, pp 488-492, 2005.
[11]Joohn-Sheok Kim,Moon-Suk Choi, SeokJoo Kang, “The Unified Gain Tuning Approach to the PID Position Control with Minimal Overshoot,Position Stiffness, and Robustness to Load Variance for Linear Machine Drives in Machine Tool Environment,” Applied Power Electronics Conference and Exposition, Sixteenth Annual IEEE , vol.1, pp. 635-641,March 2001.
[12]M. Sugiura, S. Yamamoto, J. Sawaki, K. Matsuse, “The Basic Characteristics of Two-Degree-of-Freedom PID Position Controller using a Simple Design Method for Linear Servo Motor Drives,” Advanced Motion Control, vol.1, pp. 59 - 64, 1996.
[13]C.-C. Cheng and C.-Y. Chen, “A PID approach to suppressing stick-slip in the positioning of transmission mechanisms,” Control Engineering Practice, vol.6, no.5. pp. 471-479, 1998.
[14]K. H. Ang, G. Chong, “PID Control System Analysis,Design,and Technology,” IEEE Transactions on Control Systems Technology, vol.13, no.4, pp. 559-576, 2005.
[15]C-Y. Chen, F. Hsieh and S.H Yu , “Adaptive position control of integrated linear actuator and flexure mechanism,” Industrial Electronics and Applications, IEEE Conference, pp. 2492 – 2496,2009.
[16]P. A. Ioannou, and J. Sun, “Robust Adaptive Control,” Prentice Hall,Inc.,Upper Saddle River, New Jersey, 1996.
[17]A. Sathyan, N. Milivojevic, Y-J. Lee, M.Krishnamurthy and A. Emadi, “An FPGA-Based Novel Digital PWM Control Scheme for BLDC Motor Drives,” IEEE Transactions on Industrial Electronics, vol.56, issue.8, pp. 3040-3049, 2009.
[18]S.H Yu, Ming-Hung Tseng, “Use of Sliding-Mode Modulation in Switch-Mode Power Amplification,” IEEE Transactions on Industrial Electronics, vol.55, issue.11, pp. 4022-4028 2008.
[19]S. H. Yu and C. I. Huang, “Voltage regulator modules with double-loop relay feedback control,” IEEE International Conference on Power Electronics and Drive Systems, vol.2, pp. 1563-1565, 2005.
[20]K. Yamada, S. Komada, “Analysis and classical control design of servo system using high order disturbance observer,” Industrial Electronics, Control and Instrumentation, vol., pp.4-9,1997.
[21]M. T. White , M. Tomizuka, and C. Smith, “Improved track following in magnetic disk drives using a disturbance observer,” Mechatronics, IEEE/ASME Transactions, vol.5, pp.3-11, 2000.
[22]W. Li, Yoichi Hori, “Vibration Suppression Using Single Neuron-Based PI Fuzzy Controller and Fractional-Order Disturbance Observer,” Industrial Electronics, IEEE Transaction, vol.54, issue.1, pp. 117-126, 2007.
[23]S. Endo, H. Kobayashi, “Robust digital tracking controller design for high-speed positioning systems,” Control Engineering Practice, vol.4, issue.4, pp. 527-536, 1996.
[24]C. Glenn Bradley, C. Bouton E, “Sensorless position control of a linear voice-coil transducer using sliding mode observers,” Modeling, signal processing, and control , vol.5757, pp. 246-257, 2005.
[25]B. C. Kuo, F. Golnaraghi , Automatic control systems,2003.
[26]李波前, “音圈馬達與線性放大器的整合設計與應用,” 正修科技大學碩士論文, 2009.
[27]X. Tang, I.-M. Chen, and Q. Li, “Design and nonlinear modeling of a large-displacement XYZ flexure parallel mechanism with decoupled kinematics structure,” Review of Scientific Instruments, vol. 77, pp. 115101-1-11, 2006.
[28]N. Lobontiu, Compliant Mechanisms: Design of Flexure Hinges, CRC Press, 2003.
[29]林園開, “順滑模態量化控制應用於三階降壓式電力轉換器,” 中山大學碩士論文, 2007.
[30]V. Utkin, J. Guldner, J. Shi , Sliding mode control in electromechanical systems,1999
[31]蔡永輝, “利用順滑模態量化控制理論設計D 類音頻功率放大器,” 中山大學碩士論文, 2008.
[32]P. V. Kokotovic, “The joy of feedback : nonlinear and adaptive,” Control Systems Magazine IEEE, vol.12, issue.3, pp. 7-17, 1992.
[33]B. K. Kim, and W. K. Chung, “Performance tuning of robust motion controllers for high-accuracy positioning systems,” Mechatronics, IEEE/ASME Transactions, vol. 7, pp. 500-514, 2002.
[34]B. K. Kim, and S. Park, “Robust controller design for PTP motion of vertical XY positioning systems with a flexible beam,” Mechatronics, IEEE/ASME Transactions, vol. 8, pp. 99-110, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔