跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/04 17:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳松琳
研究生(外文):Sung-lin Chen
論文名稱:應用於金屬物之RFID標籤天線設計與量測
論文名稱(外文):Measurement and Antenna Design of RFID Tags for Metallic Objects
指導教授:林根煌林根煌引用關係
指導教授(外文):Ken-Huang Lin
學位類別:博士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:127
中文關鍵詞:金屬用RFID標籤槽孔天線電感耦合阻抗匹配RFID晶片
外文關鍵詞:RFID chipimpedance matchinductively couplingRFID metal tagslot antenna
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1247
  • 評分評分:
  • 下載下載:291
  • 收藏至我的研究室書目清單書目收藏:1
為了解決RFID晶片特性量測之問題,本論文提出一種簡單、快速且僅需一台網路分析儀,即可測得RFID晶片在讀取或寫入時的阻抗,以及其最低觸發功率等參數的近似值;取得這些參數後,設計RFID標籤的人員,即可事先估測所設計之標籤實作後的最大讀取距離;因此,可大幅降低實作的成本與縮短開發設計的時程。除了RFID晶片特性量測方法外,本論文中還提出一種RFID標籤阻抗匹配的量測與驗證方法,可直接量測晶片與天線組裝後的阻抗匹配程度,同時,還可判別出實部與虛部不匹配的程度和差異,提供設計者精確的修改方向,減少重覆設計、實作與量測的開發週期;此外,驗證量測所得之數據,可用以推算不同組裝條件下所造成的組裝誤差,藉此修正RFID晶片的等效模型,讓設計者可精準的設計出組裝後的天線與晶片可達到共軛匹配條件,確保設計的RFID標籤可發揮其最大的功效。

在金屬用RFID標籤的設計上,本論文中以鋼鐵廠的應用需求為對象,提出一系列用於設計直接貼附式RFID金屬標籤的結構與方法,包括:薄形化、小型化與長讀取距離的貼附式金屬標籤設計;對於以吊掛式鐵片標籤牌為主的應用,利用不同的耦合原理,亦提出一系列的鐵片RFID標籤牌的結構與設計方法,包括:直接饋入式的槽孔天線、電感耦合式以及間接耦合式的鐵片RFID標籤設計。所提出的兩系列RFID金屬標籤之設計,可含蓋大部份鋼鐵廠的實際應用需求,解決RFID技術在金屬環境應用的瓶頸。
A measurement method for characterizing RFID chip has been proposed that can measure the approximate Read/Write threshold power and impedance of RFID strap with minimum operating procedures; furthermore, the complicated RF facilities are not required. Obtaining the specifications of RFID strap allows designers to estimate maximum read range of designed RFID tag in advance. Therefore, the implemented cost and design cycle times can be reduced substantially. For the verification of the final match condition of assembled RFID tag, a direct measurement technique has been developed, which not only can verify the final impedance match condition of the assembled RFID tags, but can also be used to identify the resistance and reactance mismatch condition between the RFID chip and antenna. The measurement data obtained from the verification method can also be used to estimate the assembly error introduced by different mounting methods. The use of the corrected circuit model of the RFID chip impedance, which includes the assembly error, helps improve the accuracy of the RFID tag design. In the RFID metal tag design, a series of low profile and miniature RFID tags, which is directly attached on metallic objects, has been developed. A series of low cost and easily produced RFID tag antenna structures also has been realized for RFID application on hanging metallic tag, which makes the RFID solution well suited for metallic tag of labeling system that requires integration of RFID technology. The attached RFID metal tag and the metallic RFID hanging tag cover most of the RFID application on steel products in the steel industry.
1. Introduction 1
2. Measurement Method for Characterizing RFID Strap 4
2.1 Conventional Source-Pull System 4
2.2 Single-Ended Probe Method 6
2.3 Enhanced RFID Source-Pull System 11
2.4 Measurement Results 15
3. A Measurement Technique for Verifying The Match Condition of RFID Tags 22
3.1 Verification Method for An Assembled RFID Tag 23
3.2 Setup of RF Output Power of The Measurement Equipment 28
3.3 Corrected Circuit Model of RFID Chip 30
3.4 Simulation and Measurement Results 32
4. RFID Tag Design for Attaching on Metallic Objects 44
4.1 Double-Mushroom Tag 45
4.2 Double-Mushroom with Capacitive Load Bar 51
4.3 Double-Mushroom with an Inner Conductive Layer 55
4.4 Double-Mushroom in Bowtie-Shaped 60
5. RFID Tag Design for Hanging Metallic Tag Applications 65
5.1 A Y-Y-Shaped Slot Antenna 66
5.2 A Multi-Feed Y-Shaped Slot Antenna 70
5.3 An Inductively Coupling Metallic Tag Antenna 76
5.4 A Miniature and Near-3D Omni-Directional Metallic Tag Antenna 88
5.5 A Multi-Feed and Near-3D Omni-directional Metallic Tag Antenna 93
5.6 A Small Dipole Coupling Metallic Tag Antenna 97
6. Conclusions 102
6.1 Summary 102
6.2 Future Research 106
APPENDIX I 108
APPENDIX II 109
[1] K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification. 2nd ed., John Wiley & Sons, England, 2003.
[2] W.L. Stutzman and G.A. Thiele, Antenna Theory and Design. John Wiley & Sons, New York, 1998.
[3] P.R. Foste and R.A. Burberry, “Antenna problems in RFID systems,” IEE Colloquium on RFID Tech., pp. 3/1-3/5, London, UK, 1999.
[4] C.A. Balanis, Antenna Theory: Analysis and Design. 3rd ed., Wiley Interscience, 2005.
[5] B. Toner and V.F. Fusco “Measurement based amplifier design,” High Frequency Postgraduate Student Colloquium, pp. 94–99, 2001.
[6] D.J. Williams and P.J. Tasker, “An automated active source and load pull measurement system,” IEEE High Frequency Postgraduate Student Colloquium, pp. 7–12, 2001.
[7] M.R. Dehaan and E. Reese “Accuracy of broadband on-wafer load pull measurements,” ARFTG Conference Digest-Spring, vol. 25, pp. 58–69, 1994.
[8] S.L. Chen and K.H. Lin, “Characterization of RFID Strap using Single-Ended Probe,” IEEE Trans. Instrum. Meas., vol. 58, no. 10, pp. 3619–3626, Oct. 2009.
[9] P.V. Nikitin, K.V.S. Rao, R. Martinez, and S.F. Lam “Sensitivity and Impedance Measurements of UHF RFID Chips,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 5, pp. 1297–1302, May. 2009.
[10] M. Camp, R. Herschman, T. Zelder, and H. Eul, “Determination of the input impedance of RFID transponder antennas with novel measurement procedure using a modified on-wafer-probe,” Advances in Radio Science, vol. 5, 115–118, 2007.
[11] S.K. Kuo, S.L. Chen, and C.T. Lin, “An accurate method for impedance measurement of RFID tag antenna,” Prog. Electromagn. Res., vol. 83, pp. 93–106, 2008.
[12] K.D. Palmer and M.W. van Rooyen “Simple broadband measurements of balanced loads using a network analyzer,” IEEE Trans. Instrum. Meas., vol. 55, no. 1, pp. 266–272, Feb 2006.
[13] L. Mats, J.T. Cain, and M.H. Mickle “The In-Situ Technique for Measuring Input Impedance and Connection Effects of RFID Tag Antenna,” IEEE Trans. Autom. Sci. Eng., vol. 6, no. 1, pp. 4–8, Jan. 2009.
[14] P. Pursula, D. Sandstrom, and K. Jaakkola “Backscattering-Based Measurement of Reactive Antenna Input Impedance,” IEEE Trans. Antennas Propag., vol. 56, no. 2, pp. 469–474, Feb. 2008.
[15] Impinj Inc., Impinj innovations provide endless possibilities [Online]. Available: http://www.impinj.com/applications/
[16] Alien Technology Corporation, RFID applications [Online]. Available: http://www.alientechnology.com/applications/
[17] UPM Raflatac Corporation, RFID success stories [Online]. Available: http://www.upmraflatac.com/asia/eng/RFIDProducts/References/
[18] D.M. Dobkin and S.M. Weigand, “Environmental effects on RFID tag antennas,” IEEE MTT-S Int. Microw. Symp. Digest, pp. 135–138, 2005.
[19] P.R. Foste and R.A. Burberry, “Antenna problems in RFID systems,” IEE Colloquium on RFID Tech., pp. 3/1–3/5, London, UK, 1999.
[20] Intermec Technologies Corporation, IT65 small Rigid Tag [Online]. Available: http://www.intermec.com/products/rfid1_rigidtagsmall/
[21] Applied Wireless Identifications Group Inc., MT Tag for LR-911 [Online]. Available: http://www.awid.com/solutions/
[22] Confidex Ltd., Ironside Gen2 UHF on-metal Tag [Online]. Available: http://www.confidex.fi/ironside0.html
[23] K.V.S. Rao, P.V. Nikitin, and S.F. Lam, “Antenna design for UHF RFID tags: a review and a practical application,” IEEE Trans. Antennas Propag., vol. 53, no. 12, pp.3870–3876, Dec. 2005.
[24] Z. Fang, R. Jin, J. Geng, M. Ding, G. Yang, and W. He, “Broadband impedance matching design for RFID transponder,” in IEEE AP-S Int. Symp., pp.1777–1780, 2007.
[25] K. Kurokawa, “Power waves and the scattering matrix,” IEEE Trans. Microw. Theory and Tech., vol. MTT-13, no. 3, pp. 194–202, Mar. 1965.
[26] P.V. Nikitin, K.V.S. Rao, S.F. Lam, V. Pillai, R. Martinez, and H. Heinrich, “Power reflection coefficient analysis for complex impedances in RFID tag design,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp.2721–2725, Sep. 2005.
[27] W.S. Chan, C.W. Fan and P.C.L. Yip, “Load-pull measurements using characterised matching network and variable load,” in IEEE Int. Conf. on Circuits and Syst., pp. 388–391, 1991.
[28] D. Kinzel, M. Fennelly, and D. Wandrei, “Measurement based behavioral modeling of impedance dependent transistor non-linearity,” IEEE Wireless Commun. Conf., pp. 114–116, 1997.
[29] D.J. Williams and P.J. Tasker, “An automated active source and load pull measurement system,” IEEE High Frequency Postgraduate Student Colloquium, pp. 7–12, 2001.
[30] Z. Xie, “Extracting true PA input impedance for high-power RF signals,” RF Design on Microw. Test and Meas., pp. 26–29, Nov. 2007. [Online]. available : http://www.rfdesign.com
[31] L. Mats, J.T. Cain, and M.H. Mickle, “Analysis and synthesis of RFID equivalent circuits through backscatter and ARS,” in IEEE Int. Conf. on RFID, pp. 49–56, Mar. 2007.
[32] M. Camp, R. Herschmann, T. Zelder, and H. Eul, “Determination of the input impedance of RFID transponder antennas with novel measurement procedure using a modified on-wafer-probe,” Advances in Radio Sci., pp. 115–118, 2007.
[33] G.D. Vita and G. Iannaccone, “Design criteria for the RF section of UHF and microwave passive RFID transponders,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 9, pp. 2978–2990, Sep. 2005.
[34] U. Karthaus and M. Fischer, “Fully integrated passive UHF RFID transponder IC with 16.7- W minimum RF input power,” IEEE J. Solid-State Circuit, vol. 38, no. 10, pp. 1602–1608, Oct. 2003.
[35] V. Pillai, “Impedance matching in RFID tags: to which impedance to match ?,” in IEEE AP-S Int. Symp., pp.3505–3508, 2006.
[36] G.C. Jung, H.K. Ryu, S. Lim, and J.M. Woo, “Design of a spherical-shaped, UHF RFID tag antenna with 3-axes polarization,” in IEEE AP-S Int. Symp., pp. 1–4, 2009.
[37] D. Kim and J. Yeo, “Low-Profile RFID Tag Antenna Using Compact AMC Substrate for Metallic Objects,” IEEE Antennas Wirel. Propag. Lett., vol. 7, pp. 718–720, 2008.
[38] T. Koskinen and Y. Rahmat-Samii, “Metal-mountable microstrip RFID tag antenna for high impedance microchip,” European Conference on Antennas and Propagation, pp. 2791–2795, 2009.
[39] H. Rajagopalan and Y. Rahmat-Samii, “A novel conformal all-surface mount RFID tag antenna design,” in IEEE AP-S Int. Symp., pp. 1–4, 2009.
[40] D.M. Pozar, Microwave Engineering 3rd. Danvers, MA: Wiley, 2005, ch. 5.
[41] M.T. Hagan, H.B. Demuth, and M.H. Beale, Neural Network Design. Boston, MA: PWS Publishing Company, 1996, ch. 10.
[42] G. Marrocco, “Gain-optimized self-resonant meander line antennas for RFID applications,” IEEE Antennas Wirel. Propag. Lett., vol. 2, pp. 302–305, 2003.
[43] H.W. Son and C.S. Pyo, “Design of RFID tag antennas using an inductively coupled feed,” Electron. Lett., no. 18, vol. 41, pp. 994–996, 2005.
[44] C.C. Chang and Y.C. Lo, “Broadband RFID tag antenna with capacitively coupled structure,” Electron. Lett., no. 23, vol. 42, pp. 1322–1323, 2006.
[45] S.Jeon, Y. Yu, and J. Choi, “Dual-band slot-coupled dipole antenna for 900 MHz and 2.45GHz RFID tag application,” Electron. Lett., no. 22, vol. 42, pp. 1259–1260, 2006.
[46] S.L, Chen and K.H. Lin, “Performance of a folded dipole with a closed loop for RFID applications,” Prog. Electromagn. Res. Symp., pp. 329–331, 2007.
[47] D.D. Deavours, “Analysis and Design of Wideband Passive UHF RFID Tags Using a Circuit Model,” in Proc. IEEE RFID 2009, pp. 283–290, Apr. 2009.
[48] 3M Corporation, “3M XYZ-Axis Electrically Conductive Tape: 9713,” 3M Technical Data, Jun. 1999.
[49]H.W. Son and G.Y. Choi, “Orthogonally proximity-coupled patch antenna for a passive RFID tag on metallic surfaces,” Microw. Opt. Technol. Lett., vol. 49, no. 3, pp.715–717, 2007.
[50] K.H. Kim, J.G. Song, D.H. Kim, H.S. Hu, and J.H. Park, “Fork-shaped RFID tag antenna mountable on metallic surfaces,” Electron. Lett., vol. 43, no. 25, pp. 1400–1402, 2007.
[51]H. Kwon and B. Lee “Compact slotted planar inverted-F RFID tag mountable on metallic objects,” Electron. Lett., vol.41, no. 24, pp. 1308–1310, 2005.
[52]M.L. Ng, K.S. Leong, and P.H. Cole, “A small passive UHF RFID tag for metallic item identification,” Int. Tech. Conf. on Circuits/Syst., Comput. Commun., Jul. 2006.
[53]C. Cho, H. Choo and I. Park “Design of planar RFID tag antenna for metallic objects,” Electron. Lett., vol.44, no. 3, pp. 175–177, 2008.
[54] D. Sievenpiper, Z. Lijun, R.F.J. Broas, N.G. Alexopolous, and E. Yablonovitch “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp.2059–2074, Nov. 1999.
[55] D. Sievenpiper, “High-impedance electromagnetic surfaces,” Ph.D. dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, Los Angeles, CA, 1999.
[56] K.V.S. Rao, S.F. Lam, and P.V. Nikitin, “Wideband metal mount UHF RFID tag,” in IEEE AP-S Int. Symp., pp. 1–4, 2008.
[57] China Steel Corporation, Production Introduction [Online]. Available: http://www.csc.com.tw/csc_e/pd/int.htm
[58] Y. Zhou, Z. Zhong, and Y. Hong, “An effective fast matching oriented slot antenna designing method with RFID tag chip,” Microw., Antenna, Propag. and EMC Technol. for Wirel. Commun. Int. Symp., pp. 575–578, 2007.
[59] X. Zeng, J. Siden, G. Wang, and H.-E. Nilsson, “Slots in Metallic label as RFID tag antenna,” in IEEE AP-S Int. Symp., pp. 1749–1752, 2007.
[60] C. Diugwu and J. Batchelor, “Complementarity in the optimization of RFID slot and patch tag antennas,” in IEEE AP-S Int. Symp., pp. 3892–3895, 2007.
[61] W.L. Stutzman and G.A. Thiele, Antenna Theory and Design. 2nd ed. Danvers, MA: Wiley, 1998, pp. 180–187.
[62] C.A. Balanis, Antenna Theory: Analysis and Design 3rd ed. Danvers, MA: Wiley, 2005, pp. 697–701.
[63] Texas Instruments Incorporated, RI-UHF-11111-01 [Online]. Available: http://focus.ti.com/docs/prod/folders/print/ri-uhf-11111-01.html
[64] J. Ahn, H. Jang, H. Moon, J. W. Lee, and B. Lee, “Inductively coupled compact RFID tag antenna at 910 MHz with near-isotropic radar cross-section (RCS) pattern,” IEEE Antennas Wirel. Propag. Lett., vol. 6, pp.518–520, 2007.
[65] D.D. Deavours, “A circularly polarized planar antenna modified for passive UHF RFID,” IEEE Int. Conf. on RFID, pp.265–269, 2009.
[66] C. Cho, H. Choo, and I. Park, “Broadband RFID tag antenna with quasi-isotropic radiation pattern,” Electron. Lett., vol. 41, no. 20, pp. 1091–1092, 2005.
[67] J. Ahn, H. Jang, H. Moon, J.-W. Lee, and B. Lee, “Inductively Coupled Compact RFID Tag Antenna at 910 MHz With Near-Isotropic Radar Cross-Section (RCS) Patterns,” IEEE Antennas Wirel. Propag. Lett., vol. 6, pp. 518–520, 2007.
[68] C. Cho, H. Choo, and I. Park, “Printed symmetric inverted-F antenna with a quasi-isotropic radiation pattern,” Microw. Opt. Technol. Lett., vol. 50, no. 4, pp. 927–930, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top