(44.192.112.123) 您好!臺灣時間:2021/03/07 18:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊承彥
研究生(外文):Cheng-Yen Yang
論文名稱:IEEE802.15.4協定堆疊實作與硬體ASIC設計以及應用於生醫監控之生理訊號轉送器
論文名稱(外文):IEEE 802.15.4 Protocol Stack Library Implementation,Hardware Design, and Applications in Medical Monitoring
指導教授:王朝欽
指導教授(外文):Chua-Chin Wang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:91
中文關鍵詞:堆疊協定晶片內匯流排生理訊號監控無線個人區域網路無線感測器網路IEEE 802.15.4WISHBONE低功率設計CSMA/CA時脈栓鎖
外文關鍵詞:Protocol Stack LibraryClock-GatingCSMA/CAOn-Chip-BusMedical MonitoringWireless Person Area NetworkIEEE 802.15.4Low powerWireless Sensor NetworkWISHBONE
相關次數:
  • 被引用被引用:1
  • 點閱點閱:402
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:116
  • 收藏至我的研究室書目清單書目收藏:1
由於製程技術快速的演進,使得積體電路在單位面積下之電晶體數成倍數增加,在單一晶片中可放入更多電路,也讓產品能朝向微型化之設計。除此之外,無線網路規格的持續發展,讓網路不再是電腦系統所獨有,近年來的發展出現ZigBee/IEEE 802.15.4,即感測器擁有網路的功能,形成感測器網路,使得感測器變的更有智慧。在不久之後,積體電路設計不再只強調前端電路與加速硬體之設計,而是在整合與功\能性方面,持續朝向系統單晶片之發展。
本論文第一主題在於IEEE 802.15.4網路之原型實作,以及硬體設計。原型實作是實現一個高移植性之IEEE 802.15.4通訊協定函式庫,其可以快速移植至不同硬體上,縮短產品開發時間。硬體設計為使用WISHBONE匯流排設計通訊協定硬體,其可容易地整合至嵌入式系統SOC設計中。
第二主題為IEEE 802.15.4應用於生醫監控方面,內容包含原型實作與ASIC硬體實現,結合植入式膀胱感測器與心電圖感測電路,最後實現我們提出之生醫監控雛型系統。
Due to the rapid development of semiconductor technology, the number of transistors of integrated circuits in unit area increases by double in roughly every two years. We then can add more circuits and functionality into a single chip. The size of electronic products certainly is reduced. Besides, because of the blooming popularity of wireless network standards in recently year, sensors have been wireless connected to provide more functionality and intelligence. They are, namely, wireless sensor network (WSN). Before long, the integrated circuit design will not only be emphasized on front-end circuits and hardware design, but also integration and functionality, which is so-called the system-on-chip (SOC) design.
The first topic of this thesis is the implementation of IEEE 802.15.4 network prototype and hardware design. The main purpose of prototyping is to realize the highly portable IEEE 802.15.4 protocol stack library which can be quickly transferred to different hardwares. Thus, it shortens the time to market. In ASIC hardware design, we use WISHBONE bus as the interconnection architecture which can be easily integrated into current SOC design for an embedded system.
The second topic is an application of IEEE 802.15.4 in medical monitoring, including system prototyping and ASIC hardware design, which collects the bladder pressure readings by a wireless link and ECG signals from our ASIC sensors. Finally, we realize the medical monitoring in a prototypical system.
摘要 ..............................................................................................................i
Abstract ...................................................................................................... ii
圖目錄 ...................................................................................................... vii
表目錄 ....................................................................................................... xi
第一章 導論 ............................................................................................... 1
1.1研究背景與相關發展 ....................................................................... 1
1.1.1 無線個人區域網路(WPAN) ..................................................... 1
1.1.2 基於IEEE 802.15.4之上應用 .................................................. 2
1.1.3 ZigBee/IEEE 802.15.4實現方式 ............................................... 4
1.1.4 Open Source Hardware的發展 .................................................. 6
1.1.5 On-Chip-Bus WISHBONE介紹 ................................................ 6
1.2研究動機 ........................................................................................... 8
1.2.1論文目標 ..................................................................................... 9
1.2.2 先前文獻分析討論 .................................................................. 11
1.3 論文架構 ........................................................................................ 12
第二章 IEEE 802.15.4 簡介與協定堆疊實作 ....................................... 13
2.1 IEEE 802.15.4分層與服務原型..................................................... 13
2.2 IEEE 802.15.4實體層 ..................................................................... 15
2.2.1實體層主要工作 ....................................................................... 15
2.2.2頻帶使用範圍 ........................................................................... 15
2.2.3實體層定義的封包格式 ........................................................... 16
2.2.4實體層服務 ............................................................................... 16
2.3 IEEE 802.15.4媒體存取層 ............................................................. 18
2.3.1媒體存取層主要工作 ............................................................... 18
2.3.2媒體存取層定義的封包格式 ................................................... 18
2.3.3媒體存取層服務 ....................................................................... 19
2.3 IEEE 802.15.4 網路拓樸與模式 ................................................... 21
2.4媒體存取層主要運作機制 ............................................................. 23
2.4.1頻道掃描 (MLME-SCAN) ...................................................... 23
2.4.2裝置關聯(MLME-ASSOCIATION) ........................................ 26
2.4.3裝置解除關聯(MLME-DISASSOCIATION) .......................... 27
2.4.4資料封包傳遞(MCPS-DATA) ................................................. 28
2.4.5媒體存取層管理服務啟動 (MLME-START) ........................ 29
2.4.6 Unslotted CSMA/CA演算法 ................................................... 30
2.5實作環境 ......................................................................................... 31
第三章 IEEE 802.15.4媒體存取層硬體設計 ........................................ 32
3.1硬體支援於協定堆疊的優點 ......................................................... 32
3.2媒體存取層硬體設計 ..................................................................... 33
3.2.1硬體架構圖 ............................................................................... 34
3.2.2低功率設計考量的匯流排通訊機制 ....................................... 36
3.2.3匯流排定址 ............................................................................... 39
3.2.4子電路硬體說明 ....................................................................... 40
3.2.5晶片規格 ................................................................................... 43
3.2.6驗證結果 ................................................................................... 46
第四章 IEEE 802.15.4應用 .................................................................... 49
4.1應用於生醫監控之生理訊號轉送器 ............................................. 49
4.1.1背景簡介 ................................................................................... 49
4.1.2原型驗證 ................................................................................... 51
4.1.3系統架構圖 ............................................................................... 52
4.1.4系統晶片驗證 ........................................................................... 55
4.1.5晶片規格 ................................................................................... 56
4.1.6晶片量測結果 ........................................................................... 58
第五章 結論與未來展望 ......................................................................... 63
5.1結論 ................................................................................................. 63
5.2未來展望 ......................................................................................... 65
附錄 A ...................................................................................................... 67
參考文獻 ................................................................................................... 72

圖目錄
圖1.1:現有無線網路規格傳輸率與範圍關係圖 2
圖1.2:通訊協定堆疊 4
圖1.3:具有硬體輔助的通訊協定堆疊 5
圖1.4:WISHBONE 資料流(Data-Flow)連結方式 7
圖1.5:WISHBONE 共享匯流排連結方式 7
圖1.6:WISHBONE 具有仲裁器控制之共享匯流排連結方式 7
圖1.7:生理訊號監控 8
圖2.1:IEEE 802.15.4 分層模型 14
圖2.2:服務原型(Service Primitive) 14
圖2.3:實體層封包格式 16
圖2.4:媒體存取層封包格式 19
圖2.5:IEEE 802.15.4的網路拓樸 21
圖2.6:IEEE 802.15.4網路模式 22
圖2.7:能量偵測掃描訊息序列圖 24
圖2.8:主動掃描訊息序列圖 25
圖2.9:孤立裝置掃描訊息序列圖 25
圖2.10:終端裝置端裝置關聯訊息序列圖 26
圖2.11:協調者端裝置關聯訊息序列圖 27
圖2.12:接收者資料封包傳送訊息序列圖 28
圖2.13:傳送者資料封包傳送訊息序列圖 28
圖2.14:媒體存取層管理服務啟動之訊息序列圖 29
圖2.15:Unslotted CSMA/CA演算法 31
圖3.1:IEEE 802.15.4媒體存取層硬體架構圖 35
圖3.2:加入低功率設計考量的WISHBONE控制訊號時序圖 36
圖3.3:WISHBONE原始的控制訊號時序圖 37
圖3.4:典型的Master模組匯流排週期狀態圖 38
圖3.5:典型的Slave模組匯流排週期狀態圖 38
圖3.6:位址對應圖 39
圖3.7:CSMA/CA演算法硬體模組 41
圖3.8:CSMA/CA演算法模組狀態圖 41
圖3.9:晶片腳位圖 45
圖3.10:晶片佈局圖 46
圖3.11:模擬訊息 47
圖3.12:模擬波形 48
圖4.1:在家治療與監控概念圖 50
圖4.2:植入式膀胱壓力感測器 51
圖4.3:心電量測器 51
圖4.4:系統原型與顯示介面 51
圖4.5:個人閘道架構圖 52
圖4.6:植入式膀胱壓力感測器之封包格式 53
圖4.7:個人閘道系統控制狀態圖 54
圖4.8:個人閘道發送之封包格式 55
圖4.9:系統功能驗證 55
圖4.10:個人閘道晶片腳位圖 56
圖4.11:個人閘道晶片佈局圖 58
圖4.12:個人閘道量測周邊電路 59
圖4.13:個人閘道量測圖(全) 59
圖4.14:個人閘道量測圖(起始動作) 60
圖4.15:個人閘道量測圖(接收感測器資料) 61
圖4.16:個人閘道量測圖(含有干擾雜訊之BPM訊號) 61
圖4.17:個人閘道量測圖(錯誤start bit的BPM訊號) 62
圖4.18:個人閘道晶片照相圖 62
圖A.1:封包解譯器 67
圖A.2:仲裁器收到信標封包要求(仲裁器端) 68
圖A.3:終端裝置收到信標封包(終端裝置端) 68
圖A.4:仲裁器收到終端裝置發送之關聯要求封包(仲裁器端) 68
圖A.5:終端裝置收到仲裁器發送之ACK封包(終端裝置端) 69
圖A.6:仲裁器接收到終端裝置發送之資料要求封包(仲裁器端) 69
圖A.7:終端裝置傳送關聯回應至該終端裝置(終端裝置端) 69
圖A.8:仲裁器收到由終端裝置發送之資料封包(仲裁器端) 70
圖A.9:終端裝置收到仲裁器封送之ACK封包(終端裝置端) 70
圖A.10:仲裁器收到有孤立裝置發送孤立裝置通知封包(仲裁器端) 70
圖A.11:終端裝置收到仲裁器重整封包(裝端裝置端) 71
圖A.12:仲裁器收到終端裝置發送之資料封包(仲裁器端) 71
圖A.13:終端裝置收到仲裁器發送之ACK封包(裝端裝置端) 71

表目錄
表1.1:IEEE 802.15 Working Group 2
表2.1:實體層資料服務存取介面之原型列表(PD-SAP primitives) 17
表2.2:實體層管理服務存取介面之原型列表(PLME-SAP primitives) 17
表2.3:媒體存取介面之資料存取介面原型(MCPS-SAP primitives) 20
表2.4:媒體存取管理介面提供的原型部分列表 20
表3.1:晶片訊號說明表 44
表3.2:晶片規格表 45
表4.1:以ADC0831為溝通對象時序表 53
表4.2:個人閘道晶片規格表 56
表4.3:個人閘道晶片訊號說明表 57
表4.4:CSMA/CA量測延遲時間表 62

[1] IEEE 802.15.4 Task Group, “IEEE 802.15.4-2006 standard”, IEEE, 2006.
[2] ZigBee Alliance. Available at: www.zigbee.org
[3] W. Stallings, Data and computer communications, 7th edition, Prentice Hall, 2003.
[4] Silicore Corporation, WISHBONE system-on-chip (SoC) interconnection architecture for portable IP cores, Silicore Corporation, 2002.
[5] OpenCores.org. Available at: opencores.org
[6] H. Labiod, H. Afifi, C.-D. Santis, WI-FI™, BLUETOOTH™, ZIGBEE™ and WIMAX™, 1st edition, Springer, 2007.
[7] E. Fred, Hand-On Zigbee: Implementing 802.15.4 with microcontrollers, 1st edition, Butterworth-Heinemann, 2007.
[8] C.-C. Wang, and C.-C Huang, “A system prototype for portable wireless medical devices,” in Proc. of 2008 IEEE Inter. Conf. on Consumer Electronics, paper P2-27, CD-ROM, Jan. 2008.
[9] C.-C. Wang, C.-C. Huang, J.-S. Liou, Y.-J. Ciou, I.-Y. Huang, C.-P. Li, Y.-C. Lee, and W.-J. Wu, “A mini-invasive long-term bladder urine pressure measurement ASIC and system,” IEEE Trans. on Biomedical Circuits and Systems, vol. 2, no. 1, pp. 44-49, Mar. 2008.
[10] C.-C. Wang, C.-Y. Yang, and C.-C. Huang, “Personal gateway design for portable medical devices used in body area networks,” in Proc. of 2010 IEEE Inter. Conf. on Consumer Electronics, paper P2-9, CD-ROM, Jan. 2010.
[11] W.-L. Pang, K.-W. Chew, F. Choong, and E.-S. Teoh, “VHDL modeling of the CSMA/CA,” in Inter. Journal of Circuits, Systems and Signal Processing, vol. 1, no. 2, pp.117-123, Feb. 2007.
[12] A.-H. Shuaib, T. Mahmoodi, and A.-H. Aghvani, “A timed Petri net model for the IEEE 802.15.4 CSMA-CA process,” in IEEE Inter. Symp. on Personal, Indoor and Mobile Radio Communication (PIMRC), Tokyo, pp. 1204-1210, Sept. 2009.
[13] J.-Y. Ha, T.-H. Kim, H.-S. Park, S. Chio, and W.-H. Kwon, “An enhanced CSMA-CA algorithm for IEEE 802.15.4 LR-WPANs,” in IEEE Communication Letters, vol.11, no. 5, pp. 461-463, May 2007.
[14] C.-T. Li, “Research and implementation of IEEE 802.15.4 wireless MAC controller,” M.S. Thesis, Graduate Institute of Computer and Communication Engineering, National Cheng-Kung University, Tainan, Taiwan, Jul. 2005.
[15] S.-H Huang, “The baseband signal processing and circuit design for 868/915 MHz mode of the IEEE 802.15.4 low rate wireless personal area network (LR-WPAN),” M.S. Thesis, Graduate Institute of Communications Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, Jun. 2005.
[16] S.-F. Su, “The design and implementation of the ZigBee protocol driver in Linux,” M.S. Thesis, Graduate Institute of Computer Science and Information Engineering, National Cheng-Kung
University, Tainan, Taiwan, Jul. 2005.
[17] L.-H. Lee, “A ZigBee transceiver used in 2.4GHz band and a 2K/4K/8K multimode fast Fourier transformation for DVB-H receivers,” M.S. Thesis, Graduate Division in Dept. of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan, Jul. 2006.
[18] P.-J. Chen, ”Implementation and design using ASIC for IEEE 802.15.4 /2.4GHz WPAN PHY layer,” M.S. Thesis, Graduate Institute of Electrical Engineering, National Chung-Cheng University, Chiayi, Taiwan, Jul. 2006.
[19] J.-L. Lin, “Development of wireless sensor network for home health-care application,” M.S. Thesis, Dept. of Electrical and Control Engineering, National Chiao-Tung University, Hsinchu, Taiwan, Jun. 2006.
[20] TI CC2420 Datasheet, “2.4GHz IEEE 802.15.4/ZigBee-ready RF Transceiver,” Texas Instruments, 2006, Available at: www.ti.com
[21] TI CC2430 Datasheet, “System-on-Chip Solution for 2.4GHz IEEE 802.15.4/ZigBee™,” Texas Instruments, Jun. 2007, Available at: www.ti.com
[22] C. Drosos, L. Bisdounis, D. Metafas, S. Blionas, A. Tatsaki, and G. Papadopoulos, “Hardware-software design and validation framework for wireless LAN modems,” in IEEE Proc. Computer, Digit. Tech. Paper, vol. 151, no. 3, pp.173-182, May 2004.
[23] P. Kuacharoen, M. Shalan, and V. Mooney, “A configurable hardware scheduler for real-time systems,” in Proc. of the Inter. Conf. Engineering of Reconfigurable Systems and Algorithms (ERSA’03),
pp.96-101, Jun. 2003.
[24] L. Benini, and G.-D. Micheli, “Networks on chip: a new SoC paradigm,” IEEE Computer, vol. 35, no. 1, pp. 70-78, Aug. 2002.
[25] K.-T. Le, “ZigBee system-on-chip (SoC) design,” High Frequency Electronics, Summit Technical Media, pp.16-24, Jan. 2006.
[26] S.-C. Ergen, “ZigBee/IEEE 802.15.4 summary,” University of California Berkeley, Sept. 2004.
[27] M. Galeev, “Home networking with ZigBee,” Embedded.com, Apr. 2004, Available at: www.embedded.com
[28] D.-C. Black, and J. Donovan, SystemC: from the ground up, Kluwer Academic Publishers, 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李紀珠(1998)美國景氣循環期間穩定性、相依性、及政策影響力,另一種實證方法。《經濟論文叢刊》vol.26:4,pp99-122。
2. 林金賢、陳育成、劉沂佩及鄭育書(2004),「具學習性之模糊專家系統在財務危機預測上之應用」,管理學報,第二十一卷第三期,pp291-309。
3. 林金賢、陳育成、劉沂佩及鄭育書(2004),「具學習性之模糊專家系統在財務危機預測上之應用」,管理學報,第二十一卷第三期,pp291-309。
4. 沈中華、陳錦村及吳孟紋(2005),「更早期預警模型:台灣銀行道德指標的建立及影響」,管理學報,第二十二卷第一期, 頁1-28。
5. 林向愷、黃裕烈、管中閔(1998),景氣循環轉折點認定與經濟成長率預測,《經濟論文叢刊》,vol.26:4,pp431-457。
6. 陳仕偉、沈中華(2003)金融領先指標與實質領先指標訊息一致嗎?台灣領先指標的實證分析,《人文及社會科學集刊》vol.15:4,pp627-660。
7. 彭建文、張金鶚、林恩從(1998)房地產景氣對生產時間落差之影響;《經濟論文叢刊》vol.26:4(1998),pp409-429。
8. 葉銀華、邱顯比、何憲章(1997),〈利益輸送代理問題與股權結構之理論與實際研究〉,《中國財務學刊》,第4卷,第4期
9. 葉銀華、蘇裕惠、柯承恩及李德冠(2004),「公司治理機制對於關係人交易的影響」,證券市場發展季刊,第十五卷第四期,pp69-106。
 
系統版面圖檔 系統版面圖檔