跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/15 23:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳政廷
研究生(外文):Cheng-ting Chen
論文名稱:傾斜式氮化鋁薄膜成長機制暨雙頻固態微型共振器之研製
論文名稱(外文):The Growth Mechanism of Inclined AlN Films andFabrication of Dual Mode Solidly Mounted Resonators
指導教授:陳英忠
指導教授(外文):Ying-chung Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:125
中文關鍵詞:氮化鋁剪波Q值傾斜角
外文關鍵詞:Shear Mode Quality factorAlNInclined angle
相關次數:
  • 被引用被引用:1
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討1/4波長之雙頻固態微型共振器之氮化鋁薄膜成長於不同底材的特性分析。反射層製作方面,使用雙靶交直流濺鍍系統,於矽基板上交替沉積鎢及二氧化矽,組成3.5對的布拉格反射器,並調整濺鍍參數使鎢薄膜成長為具有高聲阻抗之α-phase結構,其整體反射率可達0.999。壓電層製作方面,採用反應性射頻磁控濺鍍系統以非正軸濺鍍法,改變偏離靶材的距離沉積不同c軸傾斜角度的氮化鋁壓電薄膜於不同底材(Si、W/Si、Mo/Si),利用c軸傾斜的壓電層激發剪向波與縱向波,製作出最佳化剪波Q值的共振器,最後藉由穿透式電子顯微鏡探討氮化鋁薄膜成長機制。
在離軸距離對於氮化鋁薄膜材料分析方面,柱狀傾斜角和XRD-Rocking Curve之ω繞射角的偏移量會隨離軸心距離增加,由ω半高寬可知晶粒方向的均勻性,其柱狀愈傾斜和ω繞射角的偏移量愈大及半高寬愈窄,對於元件的頻率響應之剪波品質因子Q則較好,其頻率選擇性亦較佳。
在不同底材對於氮化鋁薄膜的影響方面,於離軸6cm處成長AlN/Si,其柱狀傾斜角約20度,粗糙度可低至2.63nm。於離軸6cm成長AlN/W/Si,其柱狀傾斜角約30度,ω繞射角偏移4.14度,頻率響應之剪波品質因子Q值達262。離軸6cm成長AlN/Mo/W/Si,XRD為一高c軸優選氮化鋁,柱狀傾斜25.4度,ω繞射角偏移6.72度,其剪模態Q值達290為最佳,薄膜介面處晶格失配較大,可獲得較好的剪模態訊號。

The 1/4λ dual-mode resonators made from c-axis-oriented aluminum nitride films grown on different conduction material have been studied in this thesis. The RF/DC sputter system is used to grow on layers of reflector. During the porcess, 3.5 pairs of Bragg reflector alternating with W and SiO2 are composed by Si substractor. To achieve 0.999 reflective rate, fabrication parameters are adjusted to make W films become α-phase structurre. On the other hand, piezoelectric layers as well as reflective layers that using reactive RF magnetron sputtering system and means of off-axis are combined to deposite optimal resonators of shear mode quality factor (Q) resonatros. While changing the substract and target distance between various bottom electrode materials, including Si, W/Si, and Mo/Si could deposit AlN with various c-axis tilting angle which resulted in stimulating longitudinal and shear acoustic waves. Futhermore, the finding is used to discuss the growth mechanism of inclined AlN by TEM.
The analysis of various distances of AlN films shows that column inclining angle and XRD-Rocking Curve ω will increase with distance. The quality of shear mode would be better when column and ω are highly shifed.
About the influence on AlN deposites, AlN/Si was grown away from the center by 6 cm. AlN/Si column inclining angle is about 20 degree, and RMS could reach 2.63nm beneath. Uner AlN/W/Si, column incling angle is about 30 degree, and ω shift angle 4.14 degree, the shear mode quality factor of freaquency response is obtained to 262. Under AlN/Mo/W/Si, column incling angle would be 25.4 degree, and XRD are better-choosed c-aixsm, ω tilting angle shifs 6.72 degree, and the shear mode quality factor is obtained to 290. Film intersurface appears bigger misfit by TEM to obtain better shear mode.

目錄
摘要 i
Abstract ii
目錄 iii
第一章 前言 1
1.1 研究背景動機 1
1.2 研究內容 3
第二章 理論分析 5
2.1薄膜特性分析 5
2.1.1 氮化鋁(Aluminum nitride , AlN)結構與特性 5
2.1.2 鎢(Tungsten, W)結構與特性 6
2.1.3 鉬(Molybdenum,Mo)結構與特性 7
2.1.4 二氧化矽(Silicon dioxide, SiO2)結構與特性 7
2.2 壓電現象 8
2.2.1 壓電理論 8
2.3反應式磁控濺鍍 9
2.3.1 輝光放電 10
2.3.2磁控濺射 11
2.3.3射頻濺射 11
2.3.4反應性濺射 12
2.4 薄膜沉積機制 13
2.5 SMR的理論 15
2.5.1 SMR的特點 15
2.5.2 布拉格反射器 16
2.5.3 SMR的理論分析 17
2.5.4 1/4 λ 模態的SMR 19
2.6 SMR的參數性質 19
2.6.1機電耦合係數Kt2量測 20
2.6.2 Q值測量 20
第三章 實驗 21
3.1 實驗流程 21
3.2 基板的清洗 22
3.3 交/直流濺鍍系統與薄膜沉積 24
3.4 射頻濺鍍系統與黃光製程 25
3.5 薄膜特性分析 28
3.5.1 X光繞射(X-Ray Diffraction, XRD)分析 28
3.5.2 搖擺曲線(Rocking Curve) 29
3.5.2.1搖擺曲線的原理 29
3.5.2.2 實驗方法 29
3.5.3掃描式電子顯微鏡(SEM) 30
3.5.4 原子力顯微鏡(AFM) 30
3.5.5 穿透式電子顯微鏡TEM 31
3.6 SMR的製作 32
3.6.1 反射層的製作 32
3.6.2 壓電層的製作 34
3.7 元件之設定參數 34
3.8 元件電性測量 35
第四章 結果與討論 36
4.1 布拉格反射層 36
4.1.1不同底電極(鎢和鉬)的反射層探討 36
4.2 氮化鋁壓電層之探討 38
4.2.1以濺鍍壓力15 mtorr沉積AlN/Si 39
4.2.2 以濺鍍壓力15mtorr沉積AlN/W 42
4.2.3以濺鍍壓力5 mtorr沉積AlN/W 43
4.2.4 比較AlN/W與AlN/Mo沉積於離軸6cm 46
4.3 濺鍍壓力5 mtorr於AlN/W及AlN/Mo的TEM分析 48
4.3.1 AlN/W 於離軸6cm的TEM分析 48
4.3.2 AlN/W 於正軸0cm的TEM分析 50
4.3.3 AlN/Mo 於離軸6cm的 TEM分析 52
第五章 結論 54
參考文獻 57

圖目錄
圖 1-1 三種不同型態之TFBAR元件(a)背蝕型(b) 面蝕型(c)堆疊型 64
圖2-2 壓電效應 (a)正壓電效應(b)逆壓電效應 65
圖2-3 直流輝光放電結構與電位分佈圖 66
圖2-4 平面型圓形磁控之結構圖 67
圖2-5平面磁控放電之剖面圖 67
圖2-6 反應性濺射之模型 68
圖 2-7 薄膜沉積原理 68
圖 2-8 1/4 λ模態SMR 69
圖 2-9 SMR輸入阻抗 69
(a)基板上方為相對高聲阻抗材料 69
(b)基板上方為相對低聲阻抗材料 69
圖3-1 實驗流程圖 70
圖3-2直流磁控濺鍍系統 71
圖3-3 交直流磁控濺鍍系統操作流程圖 72
圖3-4 射頻磁控濺鍍系統 73
圖 3-5 舉離法流程 74
圖 3-6 Rocking Curve示意圖 74
圖3-7 SMR製作流程圖 75
圖4-1 底電極(鎢和鉬)的反射層示意圖 76
(a)反射器結構為W/SiO2/W/SiO2/W/SiO2/W/Si 76
(b)反射器結構為Mo/W/SiO2/W/SiO2/W/SiO2/W/Si 76
圖4-2正軸下沉積反射層示意圖 76
圖4-3正軸下的反射層薄膜SEM剖面圖 77
圖4-4 底電極(鎢和鉬)的反射層XRD繞射圖 78
(a) 反射層(W/SiO2/W/SiO2/W/SiO2/W/Si )的XRD 78
(b) 反射層(Mo/W/SiO2/W/SiO2/W/SiO2/W/Si)的XRD 78
圖4-5 底電極(鎢和鉬)的反射層表面粗糙度 78
(a) 反射層(W/SiO2/W/SiO2/W/SiO2/W/Si )的AFM 78
(b) 反射層(Mo/W/SiO2/W/SiO2/W/SiO2/W/Si)的AFM 78
圖4-6離軸下沉積0cm、3cm、6cm、9cm AlN薄膜示意圖 79
圖4-7 AlN/Si薄膜於不同距離的SEM剖面圖 80
(a)0cm (b)3cm(c)6cm(d)9cm(e)柱狀傾斜和距離的關係圖 80
圖4-8 AlN/Si薄膜於不同距離的XRD繞射圖 81
(a)0cm(b)3cm(c)6cm(d)9cm 81
圖4-9 AlN/Si薄膜於不同距離的表面粗糙度 81
(a)0cm(b)3cm(c)6cm(d)9cm 81
圖4-10 AlN/W薄膜於不同距離的SEM剖面圖 82
(a)3cm、(b)6cm、(c)柱狀傾斜和距離的關係圖 82
圖4-11 AlN/W薄膜於不同距離的XRD繞射圖 83
(a)3cm、(b)6cm 83
圖4-12 AlN/W薄膜於不同距離的Rocking Curve 83
(a)3cm之(002)、(b)6cm之(002)、(c) 6cm之(101) 83
圖4-13 AlN/W薄膜於不同距離的表面粗糙度 84
(a)3cm (b)6cm 84
圖4-14 AlN/W於不同距離的SMR元件頻率響應圖 84
(a)3cm頻率和導納關係圖、(b) 不同距離的縱波Kt2和 84
Q值趨勢圖、(c)6cm導納和頻率關係圖、(d) 6cm剪波和頻率關係圖 84
圖4-15 AlN/W薄膜於不同距離的SEM剖面圖 85
(a)SMR元件圖、(b)0cm、(c)3cm、(d)6cm 85
(e)柱狀傾斜和距離的關係圖 85
圖4-16 AlN/W薄膜於不同距離的XRD繞射圖 86
(a)0cm、(b)3cm、(c)6cm 86
圖4-17 AlN/W薄膜於不同距離的Rocking Curve圖 87
(a)0cm之(101)、(b)3cm之(101)、(c) 3cm之(002) 87
(d)6cm之(101)、(e) 6cm之(002) 87
圖4-18 AlN/W薄膜於不同距離的表面粗糙度 88
(a)0cm、(b)3cm、(c)6cm、(d)不同距離的粗糙度趨勢圖 88
圖4-19 表面粗糙度、AlN(101) 2 Theta半高寬與離軸關係圖 88
圖4- 20 AlN/W薄膜於不同距離的SMR 元件剪波頻率響應 89
(a)0cm頻率和導納關係圖、(b)0cm剪波Q值和頻率關係圖 89
(c)3cm頻率和導納關係圖、(d) 3cm剪波Q值和頻率關係圖 89
(e)6cm頻率和導納關係圖、(f) 6cm剪波Q值和頻率關係圖
(g)不同距離的Kt2和Q值趨勢圖 89
圖4-21 AlN(101)RC之半高寬、偏移角與離軸關係圖 90
圖4-22 AlN(101)RC偏移角、剪波Q值與離軸關係圖 90
圖4-23 AlN/Mo薄膜於不同距離的SEM剖面圖 91
(a)SMR元件圖、(b)0cm、(c)3cm、(d)6cm 91
(e)柱狀傾斜和距離的關係圖 91
圖4-24 AlN/Mo薄膜於離軸6cm的XRD繞射圖 91
(a)2 Theta、(b)Rocking Curve 91
圖4-25 AlN/Mo薄膜於離軸6cm的表面粗糙度 92
圖4-26 AlN/Mo薄膜於離軸6cm的剪波頻率響應圖 92
(a)頻率和導納關係圖、(b)剪波Q值和頻率關係圖 92
圖4-27 (a)AlN/W/Si橫截面明場影像、(b)AlN/W介面之選圈繞射圖、(c) AlN/W/Si橫截面暗場影像、(d)W的選圈繞射圖、(e)AlN的選圈繞射圖 93
圖4-28 (a)AlN/W橫截面明場影像、(b)AlN晶粒方向於正晶帶軸(exact zone axis)的繞射圖、(c) AlN於 的微區繞射圖、(d)W於 的微區繞射圖(e)薄膜介面處晶格影像圖 95
圖4-29 (a)AlN/W/Si橫截面明場影像、(b) 放大倍率之AlN/W/Si 98
橫截面明場影像、(c) AlN/W介面之選圈繞射、(d)放大倍率
之AlN/W/Si橫截面暗場影像 98
圖4-30 (a)AlN/W橫截面明場影像、(b)AlN晶粒方向於正晶帶軸(exact zone axis)的繞射圖、(c)薄膜介面處晶格影像圖 99
圖4-31 (a)AlN/W/Mo橫截面明場影像、(b)AlN/Mo介面之選圈繞射圖、(c)AlN/Mo/Si橫截面暗場影像(d)Mo/Si介面之選圈繞射圖 101
圖4-32 AlN薄膜成長至950nm的高解析圖 102
(a)Lattice image、(b) 方形區域之Fourier transtormation 102
(c)方形區域之Fourier transtormation還原影像顯示(0002)AlN的面 102
表附錄目錄
表一 氮化鋁(AlN)基本特性 103
表二 鎢(W)基本特性 104
表三 材料聲波阻抗值 104
表四 以Si為基板之各種反射層之反射率(1/4 λ mode) 104
表五 直流濺鍍系統沉積W、Mo和SiO2薄膜之參數 105
表六 反應性射頻磁控濺鍍系統沉積氮化鋁之參數 105
表七 以濺鍍壓力15mtorr 於AlN/Si的不同沉積位置之參數 106
表八 以濺鍍壓力15mtorr 於AlN/W的不同沉積位置之參數 106
表九 以濺鍍壓力5mtorr 於AlN/W與AlN/Mo的不同沉積位置之參數 107
表十 氮化鋁、鎢、鉬材料的基本結構 107
附錄一 氮化鋁(AlN)之JCPDS Card 108
附錄二 底材鎢(W)之JCPDS Card 109
附錄三 底材鉬(Mo)之JCPDS Card 109


[1]E. Ntagwirumugara, T. Gryba, “Analysis of Frequency Response
of IDT/ZnO/Si SAW Filter Using the Coupling of Modes Model”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 54, no. 10, 2007.
[2]A. Hachigo and D. C. Malocha, “SAW Device Modeling Including Velocity Dispersion Based on ZnO/Diamond/Si Layered Structures”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 45, no. 3, pp. 660-666, 1998.
[3]P. B. Kirby, M. D. G. Potter, C. P. Williams and M. Y. Lim, “Thin Film Piezoelectric Property Considerations for Surface Acoustic Wave and Thin Film Bulk Acoustic Resonators”, Journal of the European Ceramic Society, vol. 23, pp. 2689-2692, 2003.
[4]C. L. Huang, K. W. Tay and L. Wu, “Fabrication and Performance Analysis of Film Bulk Acoustic Wave Resonators”, Materials Letters, vol. 59, pp. 1012-1016, 2005.
[5]T. Mattil, A. Oja, H. Seppa, “Micromechanical Bulk Acoustic Wave Resonator”, IEEE Ultrason. Symp., pp. 945-948, 2002.
[6]H. H. Kim, B. K. Ju, Y. H. Lee, S. H. Lee, J. K. Lee and S. W. Kim, “A Noble Suspended Type Thin Film Resonator (STFR) Using the SOI Technology”, Sensors and Actuators A, vol. 89, pp. 255-258, 2001.
[7]C. J. Chung, Y. C. Chen, “Synthesis and Bulk Acoustic Wave Properties on the Dual Mode Frequency Shift of Solidly Mounted Resonators”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 55, no. 4, pp.857, 2008.
[8]D. H. Kim, M. Yim, D. Hai, J. S. Park and G. Yoon, “Improved Resonance Characteristics by Thermal Annealing of W/SiO2 Multi-Layers in Film Bulk Acoustic Wave Resonator Devices”, Jpn. J. Appl. Phys., vol. 43, pp. 1545-1550, 2004.
[9]S. H. Lee, J. H. Kim, G. K. Mansfeld, K. H. Yoon, and J. K. Lee, “Influence of Electrodes and Bragg Reflector on the Quality of Thin Film Bulk Acoustic Wave Resonators”, IEEE International Freq. Contr. Symp., pp. 45-49, 2002.
[10]E.P EerNisse and R.B. Wiggins, “Review of Thickness-Shear Mode Quartz Resonator Sensors for Temperature and Pressure” IEEE, Sens. J., 1,pp. 79, 2001.
[11]S.J. Martin, R.W. Cernosek, and J.J. Spates, “Sensing Liquid Properties with Shear-mode Resonator Sensors” Solid-State Sensors and Actuators, Eurosensors IX. Transducers ''95. The 8th International Conference, pp. 712, 1995.
[12]G. Wingqvist, J. Bjurstroma, and L. Liljeholma, V. Yantcheva and I. katardjieva, “Shear Mode AlN Thin Film Eletrod-Acoustic Resonant Sensor Operation in Viscous Media” Sens. And Actuators B: Chemical, 23, pp. 466, 2007.
[13]S.V. Krishnaswamy, B.R. McAvoy, and W.J. Takei, ‘‘Oriented ZnO Films for Microwave Shear Mode Transducers’’ IEEE Ultrason. Symp., pp. 476, 1982.
[14]N.F. Foster, G.A. Coquin, and G.A. Rozgonyi, and F.A. Vannatta, ‘‘Cadmium Sulphide and Zinc Oxide Thin-Film Transducers’’ IEEE Trans. Son. Ultrason., 15, pp. 28, 1968.
[15]A. Dickherber, C.D. Corso, and W.Hunt, ‘‘Lateral Field Excitation(LFE) of Thickness Shear Mode (TSM) Acoustic Waves in Thin Film Bulk Acoustic Resonators (FBAR) as a Potential Biosensor’’ IEEE, 28 th EMBS Annual International Conference, pp. 4590, 2006.
[16]吳朗,”電子陶瓷:壓電陶瓷”,全欣資訊,pp. 7, 1994.
[17]H. H. Kim, B. K. Ju, Y. H. Lee, S. H. Lee, J. K. Lee and S. W. Kim, “A Noble Suspended Type Thin Film Resonator (STFR) Using theSOI Technology”, Sensors and Actuators A, vol. 89, pp. 255-258, 2001.
[18]T. Mattil, A. Oja, H. Seppa, O. Jaakkola, J. Kiihamaki, H. Kattelus, M. Koskenvuori, P. Rantakari, and I. Tittonen, “Micromechanical Bulk Acoustic Wave Resonator”, IEEE Ultrasonic Symposium, pp. 945-948. 2002.
[19]施敏著,張俊彥譯,”半導體元件之物理與技術”,儒林,pp. 425, 1990.
[20]I. Djerdj, A.M. Tonejc, “XRD line profile analysis of tungsten thin films”, Vacuum, vol. 80, pp.151-158, 2005.
[21]T. Karabacak, A. Mallikarjunan, “β phase tungsten nanorod formation by oblique-angle sputter deposition”, Applied Physics Letters, vol. 83, no. 15, pp. 3096, 2003.
[22]K. Y. Ahn, “A comparison of tungsten film deposition techniques for very large scale integration technology”, Thin Solid Films, vol. 153, pp. 469, 1987.
[23]N. Radic, A. Tonejc, “Sputter-deposited amorphous-like tungsten”, Surface and Coatings Technology, vol. 180, pp. 66-70, 2004.
[24]G. S. Chen, H. S. Tian,” Phase transformation of tungsten films deposited by diode and inductively coupled plasma magnetron sputtering”, J. Vac. Sci. Technol., vol. 22, No. 2, pp. 281-286, 2004.
[25]C. T. Hsieh, J. M. Ting, “Field emission properties of tungsten films exhibiting a rod-like structure”, Chemical Physics Letters, vol. 413, pp.84-87, 2005.
[26]J.B. Lee, J.P.Jung,, M.H. Lee, and J.S Park, ‘‘Effects of Bottom Electrodes on The Orientation of AlN Films and The Frequency Responses of Resonators in AlN-BasedFBAR’’Thin Solid Films, pp. 447,2004.
[27]R. W. Berry, P. M. Hall and M. T. Harris, “Thin Film Technology”,D. Van Nostrand CO., INC., Princeton, N. J, pp.706, 1968.
[28]F. Engelmark, J. Westlinder, G. F. Iriarte, I. Katardjiev and J. Olsson, “Electrical Characterization of AlN MIS and MIM Structures”, Trans. on IEEE Electron , Vol. 50, pp. 1214-1219, 2003
[29]J. L. Vossen and W. Kern, “Thin Film Process”, Academic Press, pp.134, 1991.
[30]E. Janczak-Bienk, H. Jensen and G. Sorensen, “The Influence of the Reactive Gas Flow on the Properties of AlN Sputter-Deposited Films”, Mater. Sci. and Eng. A, vol. 140, pp. 696-701, 1991.
[31]王宏灼,”反應性射頻濺鍍法成長氮化鋁薄膜之研究”,國立中山大學電機工程研究所,碩士論文,(1995)。
[32]蔡家龍,”製成參數對建設沉積淡化鋁之影響”,國立中山大學電機工程研究所,碩士論文,(2000)。
[33]歐天凡,”沉積條件對氮化鋁薄膜壓電系數及機電耦合係數之影響”,國立中山大學電機工程研究所,碩士論文,(2004)。
[34]廖秋風,”氮化物粉體”,材料與社會,40, pp.59-67,1990.
[35]D. C. Bertolet, H. Liu and J. W. Rogers, “Initial Stages of AlN Thin-film Growth on Alumina Using Trimethylamine Alane and Ammonia Precursors”, J. Appl. Phys., vol. 75, pp. 5385-5390, 1994
[36]K. M. Lakin, K. T. McCarron, and R. E. Rose, “Solidly Mounted Resonators and Filters”, 1995 IEEE Ultrasonic Symposium, pp.905-908.
[37]H. Kobayashi, Y. Ishida, K. Ishikawa, A. Doi and K. Nakamura, “Fabrication of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers”, Jpn. J. Appl. Phys., vol. 41, pp. 3455-3457, 2002.
[38]K. Nakamura and H. Kanbara, “Theoretical Analysis of A Piezoelectric Thin Film Resonator With Acoustic Quarter-Wave Multilayers”, IEEE International Freq. Con. Symp., pp. 876-881, 1998.
[39]H. Kanbara, H. Kobayashi and K. Nakamura, “Analysis of Piezoelectric Thin Film Resonators with Acoustic Quarter-Wave Multilayers”, Jpn. J. Appl. Phys., vol. 39, pp. 3049-3053, 2000.
[40]K. M. Lakin, K.T. McCarron, and J.F. McDonald, “Temperature Compensated Bulk Acoustic Thin Film Resonators”. IEEE, Ultrason. Symp, pp. 855, 2000.
[41]R. S. Naik, J. J. Lutsky and R. Reif, “Measurements of the Bulk, C-Axis Electromechanical Coupling Constant as a Function of A1N Film Quality”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 47, pp. 292-296, 2000.
[42]K.M. Lakin, ‘‘Development of Miniature Filters for Wireless Applications,’’ IEEE Trans. On Microwave Theory and Techniques, pp.2933,1995.
[43]D. C. Bertolet, H. Liu and J. W. Rogers, “Initial Stages of AlN Thin-film Growth on Alumina Using Trimethylamine Alane and Ammonia Precursors”, J. Appl. Phys., vol. 75, pp. 5385-5390,1994.
[44]吳東庭,” 雙頻固態微型諧震器與濾波器之頻率調變”,國立中山大學電機工程研究所碩士論文,(2007)。
[45]J. Bjurstrom, G. Wingqvist and I. Katardjiev, “Synthesis of Textured Thin Piezoelectric AlN Films with a Nonzero C-axis mean tilt for the fabrication of shear mode resonator”, IEEE Trans. on Ultrason., Ferroelect., and Freq. Contr.vol.53, pp.2095-2100, 2005.
[46]B. H. Hwang, C. H. Chen, H. Y. Lu and T. C. Hsu, Mater. Sci. Eng. vol.325,pp. 380, 2002.
[47]A Fardeheb-Mammeri, M B Assouar, O Elmazria, J-J Fundenberger and B Benyoucef, Semicond. Sci. Technol. 23, 095013 ,2008
[48]J. Bjurstrom, D. Rosen, I. Katardjiev, V. M. Yanchev and I. Petrov, IEEE Trans. on Ultrason., Ferroelect., and Freq. Contr. vol.51, pp.1347, 2004.
[49]鐘崇仁,” 雙頻固態微型共振器及其體聲波特性之研究”,
國立中山大學電機工程研究所博士論文,(2008)。
[50]李欣仁,” 1/4及1/2波長共振模態之共振特性於固態微型共振器之研究”,國立中山大學電機工程研究所碩士論文,(2008)。
[51]Sang-Hee Kim and Jong-Heon Kim, Hee-Dae Park, and Giwan Yoon, ’’AlN-based film bulk acoustic resonator devices with W/SiO2 multilayers reflector for rf bandpass filter application’’, J. Vac. Sci. Technol. B, Vol. 19.pp.1164-1168, 2001.
[52]W. T. Lim , B. K. Son, D. H. Kang, C.H. Lee, ‘’Structural properties of AlN films grown on Si, Ru on Si and ZnO on Si substrates’’,Thin Solid Films , vol.382,pp.56-60, 2001
[53]W. T. Lim , C. H. Lee, ‘‘Highly oriented ZnO thin films deposited on Ru on Si subtrates’’ , Thin Solid Films ,vol.353,pp. 12-15, 1999.
[54]R.D. Vispute , J. Narayan , J. D.Budai , ‘’High quality optoelectronic grade epitaxial AlN films’’ , vol.299,pp. 94-103, 1997.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top