(3.235.11.178) 您好!臺灣時間:2021/03/05 15:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃煜昌
研究生(外文):Yu-Chang Huang
論文名稱:沉積氧化鋅薄膜於不鏽鋼基材及其作為壓電換能器之應用
論文名稱(外文):Investigation of ZnO Thin Films Deposited on Stainless Steel Substrates for Piezoelectric Transducers Application
指導教授:陳英忠
指導教授(外文):Ying-Chung Chen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:88
中文關鍵詞:氧化鋅不鏽鋼基板壓電換能器
外文關鍵詞:stainless steel substrateZnOpiezoelectric transducer
相關次數:
  • 被引用被引用:3
  • 點閱點閱:214
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用射頻磁控濺鍍法沉積氧化鋅薄膜於可撓式不鏽鋼基板上以製作壓電換能器,並利用懸臂樑振動理論設計出適用於低頻環境的壓電換能器之尺寸;該壓電換能器懸臂樑尺寸為1cm及共振面積為1cm2。在本研究裡,藉由調變基板溫度、濺鍍功率及工作壓力以探討沉積參數對於氧化鋅薄膜的影響,並分析單位薄膜厚度下的發電量以選擇氧化鋅薄膜之最佳鍍膜參數,以期能達到壓電換能器最佳化。在物性分析方面,藉由掃描式電子顯微鏡與X光繞射儀分析薄膜表面型態、側面結構、結晶性,電量分析採用振動儀量測開路與負載電壓。由物性與電性分析結果顯示,最佳沉積條件為基板溫度300℃、濺鍍功率75W、工作壓力9 mTorr和氧氣濃度60%,在此條件下可獲得晶粒均勻和高C軸優選的晶向且單位厚度發電量高的薄膜。此外,銅金屬具有低成本與整流效果的優勢,適合用於壓電換能器之製作。因此,本文採用銅電極製作上電極,進而完成壓電換能器之製作。
本研究中,壓電換能器將外加0.57g的錫金屬作為質量負載,以幫助懸臂樑進行擺動。經由振動試驗儀輸入1~150Hz的振動能,並藉由示波器量測結果得知其共振頻率為75Hz;由實驗結果得知,開路電壓隨著振動擺幅的提升而增加;當振動擺幅為1.19mm時,可測得最大開路電壓為5.25V。元件經由1NN5711蕭特基二極體製作的橋式電路整流,以及33nF的電容濾波後,於負載電阻為5MΩ時,可以得到最大的發電功率為1.0μW/cm2。
This study presents a high-performance ZnO piezoelectric transducer integrated with the flexible stainless steel substrate. The ZnO piezoelectric film of 1.08nm was deposited on the flexible stainless steel substrate using a RF magnetron sputtering system. The cantilever length of 1cm and the vibration area of 1cm2 were designed for low-frequency environment according to the Cantilever Vibration Theory. The effects of various sputtering parameters such as substrate temperature, RF power and sputtering pressure were investigated to improve the piezoelectric characteristics of ZnO thin films. It was also discussed the unit thickness of open voltage values, and then the optimal sputtering parameters were determined. The physical characteristics of ZnO thin films were obtained by the analyses of the scanning electron microscopy (SEM) and X-ray diffraction (XRD) to discuss the surfaces, cross section and crystallization of ZnO thin films. The voltage analysis were measured the open and load voltage by the measurement system. The optimal deposition parameters for ZnO thin films are substrate temperature of 300℃, RF power of 75W, sputtering pressure of 9 mTorr and oxygen concentration of 60%, which were determined by physical characteristics and voltage analysis.
The study employs a precise mass loading of 0.57g on the cantilever to increase the vibration amplitude. The vibration source from 1~150Hz was provided to the piezoelectric transducer, and then the experimental results were showed resonance frequency of 75Hz by oscilloscope. When the optimal thickness of ZnO films is 1.08μm and vibration amplitude is 1.19mm, the open circuit voltage of the power generator is 5.25V.After rectifying and flitting with a capacitor of 33nF,the maximum power of 1.0μW/cm2 was achieved with the load resistance of 5MΩ.
誌謝 III
摘要 VI
ABSTRACT VIII
目錄 X
圖目錄 XII
表目錄 XIV
第一章 緒論 1
1-1 研究背景與動機 1
1-2 壓電換能器簡介 4
1-3 研究目的 9
第二章 理論分析 11
2-1 壓電理論 11
2-2 壓電薄膜-氧化鋅的結構與特性 13
2-3 壓電換能器結構介紹 14
2-4 壓電換能器原理 17
2-5 薄膜沉積原理 21
2-6 反應性射頻磁控濺鍍原理 23
2-6-1 輝光放電 23
2-6-2 射頻濺鍍 24
2-6-3 磁控濺鍍 25
2-6-4 反應性濺射 26
2-7 全波整流濾波電路 28
2-7-1 橋式整流電路工作原理 28
2-7-2 電容濾波工作原理 29
第三章 實驗 31
3-1 設計元件尺寸 32
3-2 薄膜沉積 32
3-2-1 基板之準備與清洗 32
3-2-2 射頻濺鍍系統與壓電層之沉積 33
3-3 壓電換能器製作流程 35
3-4 物理性質量測 36
3-4-1 X光繞射分析 36
3-4-2 掃描式電子顯微鏡SEM分析 38
3-5 電性量測 39
3-5-1 換能器共振頻率測量 40
3-5-2 雷射位移計量測輸入振動源 41
3-5-3 換能器開路電壓量測 42
3-5-4 換能器負載電壓量測 42
3-5-5 換能器整流濾波輸出負載電壓量測 43
3-6 薄膜附著性分析 44
3-6-1 奈米壓痕檢測系統 44
第四章 結果與討論 46
4-1 溫度調整 46
4-1-1 溫度對氧化鋅薄膜表面結構的影響 46
4-1-2 溫度對XRD的影響 48
4-1-3 溫度對發電量的影響 50
4-1-4 溫度結論 51
4-2 功率調整 52
4-2-1 功率對氧化鋅薄膜表面結構的影響 52
4-2-2 功率對XRD的影響 55
4-2-3 功率對發電量的影響 56
4-2-4 功率結論 57
4-3 壓力調整 57
4-3-1 壓力對氧化鋅薄膜表面結構的影響 57
4-3-2 濺鍍壓力對XRD的影響 59
4-3-3 壓力對發電量的影響 60
4-3-4 壓力結論 61
4-4 薄膜附著性分析 61
4-4-1 ZnO於ITO/PET的附著性分析 62
4-4-2 ZnO於SUS304的附著性分析 63
4-5 換能器輸出電壓量測討論 64
4-5-1 不同振動擺幅對輸出電壓的影響 64
4-5-2 不同負載對輸出電壓的影響 65
4-5-3 具整流濾波系統之壓電換能器 66
4-5-4 充電與LED發光實驗 67
第五章 結論與展望 69
參考文獻 70
[1]D.M. Rowe, D.V. Morgan, and J.H. Kiely, “Low cost miniature thermoelectric generator”, Electronic Letter 27, pp. 2332-2334 (1991).
[2]C.B. Williams, and R.B. Yates, “Analysis of a micro-electric generator for Microsystems”, The 8th International Conference on Solid-State Sensors and Actuators, Vol. 1, pp. 369-372 (1995).
[3]C.B. Williams, and R.C. Woods and R.B. Yates, “Feasibility study of a vibration powered micro-electric generator”, Compact Power Sources (Digest No. 96/107), IEE Colloquium, pp. 7/1-7/3 (1996).
[4]R. Amirtharajah and A. P. Chandrakasan, “Self-powered signal processing using vibration-based power generation”, IEEE Journal of Solid-State Circuits, vol. 33, no. 5, pp. 687-695 (1998).
[5]C. B. Williams, C. Shearwood, M. A. Harradine, P. H. Mellor, T.S.Birch, and R. B. Yates, “Development of an electromagnetic micro-generator,” IEE Porc.-Circuits Devices System, vol. 148, no. 6,pp. 337-342 (2001).
[6]W. J. Li, T. C. H. Ho, G. M. H. Chan, P. H. W. Leong, and H. Y. Wong, “Infrared signal transmission by a laser-micromachined vibration-induced power generator,” Proc. 43rd IEEE Midwest Symposium on Circuits and Systems, pp. 236-239 (2000).
[7]P. Glynne-Jones, M.J. Tudor, S.P. Beeby, N.M. White, “An electromagnetic, vibration-powered generator for intelligent sensor systems, ”Sensors and Actuators A 110 pp.344–349(2004).
[8]B.H. Stark and T.C. Green, “Comparison of SOI power device structures in power converters for high-Voltage low-charge electrostatic microgenerators,” IEEE Transactions on Electron Devices, Vol.52, No.7, pp. 1640-1648(2005).
[9]E.O.Torres1and G.A.Rincón-Mora,“Long-Lasting,Self-Sustaining, and Energy-Harvesting System-in-Package (SIP) Wireless Micro-Sensor Solution,” International Conference on Energy, Environment and Disasters (INCEED 2005), Charlotte, North Carolina, USA, July 24-30 (2005).
[10]N M White1, P Glynne-Jones and S P Beeby, “A novel thick-film piezoelectric micro-generator, ” Smart Mater. Struct. 10 850–852 (2001).

[11]P. Glynne-Jones, S. P. Beeby, and N.M. White, “ Toward a piezoelectric vibration-powered microgenerator”, IEE Proc.-Sci. Meas. Technol, vol. 148, n. 2, pp. 68-72 (2001).
[12]J. Y. Kang, H. J. Kim, J. S. Kim, T. S. Kim, “Optimal design of piezoelectric cantilever for a micro power generator with micro bubble”, The 2nd Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine & Biology, pp.424-427 (2002).
[13]S. Kim, “Low power energy harvesting with piezoelectric generators”, Doctoral Dissertation, University of Pittsburgh, (2002)12.
[14]R. K. Sood, “Piezoelectric Micro Power Generator (PMPG): A MEMS-based Energy Scavenger”, Graduate Thesis, Massachusetts Institute of Technology, (2003)9.
[15]H.B. Fang, J.Q. Liu, Z.Y. Xu, L. Dong,L. Wang, D. Chen, B.C. Cai, Y. Liu, “Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting”, Microelectronics Journal , (2006).
[16]J.Q. Liu, H.B. Fang, Z.Y. Xu, X.H. Mao, X.C. Shen, D. Chen, H. Liao, B.C. Cai, “A MEMS-based piezoelectric power generator array for vibration energy harvesting”, Microelectronics Journal 39, pp.802–806(2008).
[17]林盈旭,“壓電式振動微發電機之設計與製作”,國立中興大學機械工程學系碩士論文,(2002)。
[18]廖偉翔,“壓電換能器於低頻發電應用之設計與分析”, 國立成功大學機械工程學系碩士論文,(2007)。
[19]吳秉融 ,“氧化鋅薄膜成長於PET基板上並應用於壓電換能器之研究” ,國立中山大學電機工程學系碩士論文,(2009)。
[20]陳麒麟,張榮芳,張加強,“軟性顯示器發展及關鍵技術現況”,工研院。
[21]J. B. Baxter, A. M. Walker, K. V. Ommering, and E. S. Avdil, “Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells”, Nanotechnology 17, S304(2006).
[22]H. J. Kim, C. H. Lee, D. W. Kim, and G. C. Yi, “Fabrication and electrical characteristics of dual-gate ZnO nanorod metal–oxide semiconductor field-effect transistors”, Nanotechnology 17, S327 (2006
[23]K. Iwata, T. Sakemi, A. Yamada, P. Fons, K. Awai, T. Yamamoto, S. Shirakat, K. Matsubara, H. Tampo, K. Sakurai, S. Ishizuka, S. Niki, “Improvement of ZnO TCO film growth for photovoltaic devices by reactive plasma deposition (RPD) ”, Thin Solid Films 480–481, pp.199– 203(2005).
[24]K.S. Kao, C.C. Cheng, Y.C. Chen and Y.H. Lee, “The characteristics of surface acoustic waves on AlN/LiNbO3 substrates”, Applied Physics A: Materials Science & Processing, (76) pp.1125(2003).
[25]L. Vayssieres, K. Keis, S. E. Lindquist, and A. Hagfeldt, “ Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO”, J. Phys. Chem. B, 105, pp.3350-3352(2001).
[24]K. H. Yoon and J. Y. Cho, “Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique”, Mater. Res. Bull., vol. 35, pp. 39-46(2000).
[27]Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka and G. Shimaoka, “Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation”, Appl. Surf. Sci., vol. 142, pp. 233-236(1999).
[28]L. Wang, Y. Pu, Y.F. Chen, C.L. Mo, W.Q. Fang, C.B. Xiong, J.N. Dai, F.Y. Jiang, “MOCVD growth of ZnO films on Si(1 1 1) substrate using a thin AlN buffer layer”, Journal of Crystal Growth 284 , 459–463(2005).
[29]K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe and S. Fujita, “Effects of oxygen plasma condition on MBE growth of ZnO”, J. Crystal Growth, vol. 209, pp. 522-525(2000).
[30]X. H. Li, A. P. Huang, M. K. Zhu, Sh. L. Xu, J. Chen, H. Wang, B. Wang, B. Wang and H. Yan, “Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films”, Mater. Lett., vol. 75, pp. 4655-4659( 2003).
[31]W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films”, Mater. Lett., vol. 55, pp. 67-72(2002).
[32]G. Srinivasan, and J. Kumar, “Optical and structural characterisation of zinc oxide thin films prepared by sol-gel process”, Cryst. Res. Technol. 41, No. 9, pp.893 – 896 (2006).
[33]Y.Y. Villanueva , D.R. Liu , P. T. Cheng, “Pulsed laser deposition of zinc oxide”, Thin Solid Films 501,366– 369 (2006).
[34]吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊圖書公司,(1994)7。
[35]A. El Hichou , M. Addoua, A. Bougrine , R. Dounia , J. Ebothé, M. Troyon, M. Amrani, “Cathodoluminescence properties of undoped and Al-doped ZnO thin films deposited on glass substrate by spray pyrolysis”, Materials Chemistry and Physics 83, pp.43–47 (2004).
[36]H.J.Ko,Y.F.Chen,S. K. Hong, H. Wenisch, and T. Yao,“Ga-doped ZnO films grown on GaN templates by plasma-assisted”,Applied Physics Letters,Vol 77,Number23(2000).
[37]S. Major and K. L. Chopra, “Indium-doped zinc oxide films as transparent electrodes for solar cells”, Solar Energy Materials 17, pp.319-327(1988).
[38]Su-Shia Lin, J.L.Huang, “The Properties Of Ti-doped ZnO Films
Deposited By Simultaneous r.f. And d.c. Magnetron Sputtering”, submitted to Surface And Coating Technology. EI/SCI. (2003).
[39]F. Lu, H. P. Le and S. P. Lim, “Modeling and Analysis of Micro
Piezoelectric Power Generators for Micro-Electromechanical
-Systems Application”,Smart Materials and Structures, Vol.13, pp.57-63(2004).
[40]K Lawver, “Thunders: A new frontier in research for smart materials”, Face International Corporation, Virginia, USA.
[41]Hyeoung Woo Kim, Amit Batra, Shashank Priya, Kenji Uchino, Douglas Markley, Robert E. Newnhan and Heath F. Hofmann, “Energy Harvesting Using a Piezoelectric ‘‘Cymbal’’ Transducer in Dynamic Environment”, Japanese Journal of Applied Physics, Vol. 43, No. 9A, pp. 6178–6183(2004).
[42]莊達人,“VLSI製造技術”,高立圖書股份有限公司,(1995)。
[43]J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings”, J. Vac. Sci. Technol., vol. 11, pp. 666-698(1974).
[44]R. W. Berry, P. M. Hall and M. T. Harris, “Thin Film Technology”, van Nostrand Reinhold, 201,(1980).
[45]J. L. Vossen and W. Kern, “Thin Film Process”, Academic Press, 134,( 1991).
[46]E. Janczak-Bienk, H. Jensen and G. Sorensen, “The Influence of the Reactive Gas Flow on the Properties of AlN Sputter-Deposited Films”, Mater. Sci. and Eng. A, vol. 140, pp.696-701, (1991).
[47]王宏灼,“反應性射頻濺鍍法成長氮化鋁薄膜之研究”,國立中山大學電機工程研究所碩士論文,(1995)。
[48]蔡家龍,“製程參數對濺射沉積氮化鋁薄膜之影響”,國立中山大學電機工程研究所碩士論文,(2000)。
[49]Adel S. Sedra and Kenneth C. Smith, “Microelectronic Circuits”, Oxford University Press, (2004).
[50]陳智昇 ,“懸臂樑式壓電發電機之結構阻尼探討”,國立中興大學機械工程學系碩士論文,(2004)。
[51]J. W. Shin and J. Y. Lee , “Growth mechanisms of thin-film columnar structures in zinc oxide on p-type silicon substrates”, Appiled Physics Letters 88, 091911 (2006).
[52]Eugenia Mirica, Glen Kowach, Paul Evans,and Henry Du, “ Morphological Evolution of ZnO Thin Films Deposited by Reactive Sputtering’’,Crystal Growth&Design.4,147-156(2004).
[53]黃淑綺 ,“以反應式濺鍍製備氧化鋅薄膜及其摻雜之研究”, 國立中山大學材料科學研究所碩士論文,(2006)。
[54]B. Grycz, B. Gross and K. Miklossy, “Non-equilibrium processes in plasma technology”, American Elsevier publishing Co., Inc. N.Y., pp. 354-356, (1969).
[55]S. S. Park and S. G. Yoon, “Effects of Chamber Pressure on Composition and Electrical Properties of Zr-Modified (Ba1-x, Srx)TiO3 Thin Films Grown by Sputtering”, Jpn. J. Appl. Phys., vol. 39, pp. L1177-L1179, (2000).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔