(3.231.29.122) 您好!臺灣時間:2021/02/25 16:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳學瑋
研究生(外文):Shiue-Wei Wu
論文名稱:針對混沌同步及應用於安全通訊之適應順滑模態追蹤控制器設計
論文名稱(外文):Design of Adaptive Sliding Mode Tracking Controllers for Chaotic Synchronization and Application to Secure Communications
指導教授:鄭志強鄭志強引用關係
指導教授(外文):Chih-Chiang Cheng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:70
中文關鍵詞:安全通訊混沌同步非匹配干擾適應順滑模態控制
外文關鍵詞:secure communicationchaotic synchronizationmismatched perturbationsadaptive sliding mode control
相關次數:
  • 被引用被引用:0
  • 點閱點閱:111
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中利用適應順滑模態追蹤控制器成功地使得兩個具有匹配與非匹配擾動的相同混沌系統得以達到混沌同步。基於李亞普諾夫穩定性理論與線性矩陣不等式最佳化技術本論文設計出順滑面方程式,以及在所提出的控制法則中引入了適應性調控機制,因此所設計的控制器可在系統進入順滑模態之後不僅能有效壓制非匹配擾動對受控系統之影響,也可使同步誤差控制在一個很小的範圍之內,且系統的擾動上界值不需事先知道,進而保證整個同步系統的穩定度。另外,論文中所提出來的同步技術可應用在安全通訊領域上。最後,分別以數值實例模擬來驗證控制器的可行性。
Synchronization of two identical chaotic systems with matched and mismatched perturbations by utilizing adaptive sliding mode control (ASMC) technique is presented in this thesis. The sliding surface function is designed based on Lyapunov stability theorem and linear matrix inequality (LMI) optimization technique. Adaptive mechanisms embedded in the proposed control scheme are used to adapt the unknown upper bounds of the perturbations. The designed tracking controller can not only suppress the mismatched perturbations when the controlled dynamics (master-slave) are in the sliding mode, but also drive the trajectories of synchronization errors into a small bounded region whose size can be adjusted through the designed parameters. The stability of overall controlled synchronization systems is guaranteed. Application of proposed chaotic synchronization technique to secure communication as well as several numerical examples are given to demonstrate the feasibility of the proposed design technique.
Contents
Abstract i
List of Figures iv
Chapter 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Application to chaotic synchronization and secure communications . . . . . . . . 3
1.3 Brief Sketch of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Design of Robust Sliding Mode Tracking Controllers 6
2.1 System Descriptions and Problem Formulations . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Design of Sliding Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Design of the Gain Matrix in the Sliding Function and Stability Analysis . . . . 11
2.4 Design of Adaptive Sliding Mode Tracking Controllers . . . . . . . . . . . . . . . . . . 19
Chapter 3 Application to Chaotic Synchronization and Secure Communications 25
3.1 Design of Adaptive Sliding Mode Tracking Controllers . . . . . . . . . . . . . . . . . . 26
Chapter 4 Numerical Examples and Simulations 32
4.1 Chaotic synchronization with mismatched perturbations . . . . . . . . . . . . . . . . . 32
4.2 Chaotic synchronization with matched perturbations . . . . . . . . . . . . . . . . . . . . 35
4.3 Chaotic secure communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Chapter 5 Conclusions and Future Works 51
Bibliography 52
[1] K. T. Alligood, T. D. Sauer, and J. A. Yorke, Chaos: an introduction to dynamical systems, New York: Springer, 1996.
[2] L. M. Pecora, and T. L. Carroll, “Synchronization in chaotic systems,” Phys. Rev. Lett., Vol. 64, No. 8, pp. 821-824, 1990.
[3] S. K. Yang, C. L. Chen, and H. T. Yau, “Control of chaos in Lorenz system,” Chaos, Solitons & Fractals, Vol. 13, Issue 4, pp. 767-780, 2002.
[4] O. E. Rössler, “An equation for continuous chaos,” Phys. Lett., Vol. 57, Issue 5, pp. 397-398, 1976.
[5] Q. Xie, and G. Chen, “Synchronization stability analysis of the chaotic Rössler system,” Int. J. Bifurcation and Chaos, Vol. 6, No. 11, pp. 2153-2161, 1996.
[6] T. Ueta, and G. Chen, “Bifurcation analysis of Chen’s equation,” Int. J. Bifurcation and Chaos, Vol. 10, No. 8, pp. 1917-1931, 2000.
[7] P. F. Curran, and L. O. Chua, “Absolute stability theory and the synchronization problem,” Int. J. Bifurcation and Chaos, Vol. 7, No. 6, pp. 1375-1383, 1997.
[8] J. A. K. Suykens, P. F. Curran, and L. O. Chua, “Robust synthesis for master-slave synchronization of Lur’e systems,” IEEE, Transactions on Circuits and Systems, Vol. 46, pp. 841-850, 1999.
[9] J. Lü, and J. Lu, “Controlling uncertain Lü system using linear feedback,” Chaos, Solitons & Fractals, Vol. 17, Issue 1, pp. 127-133, 2003.
[10] B. Cannas, and S. Cincotti, “Hyperchaotic behaviour of two bi-directionally coupled Chua''s circuits,” Int. J. Circ. Theor. Appl., Vol. 30, No. 6, pp. 625-637, 2002.
[11] K. Murali, and M. Lakshmanan, “Synchronization through compound chaotic signal in Chua''s circuit and Murali-Lakshmanan-Chua circuit,” Int. J. Bifurcation and Chaos, Vol. 7, No. 2, pp. 415-421, 1997.
[12] H. H. Tsai, C. C. Fuh, and C. N. Chang, “A robust controller for chaotic systems under external excitation,” Chaos, Solitons & Fractals, Vol. 14, Issue 4, pp. 627-632, 2002.
[13] M. Boutayeb, M. Darouach, and H. Rafaralahy, “Generalized State-Space Observers for Chaotic Synchronization and Secure Communication,” IEEE, Transactions on Circuits and Systems, Vol. 49, No. 3, pp. 345-349, 2002.
[14] E. Cherrier, M. Boutayeb, and J. Ragot, “Observers-Based Synchronization and Input Recovery for a Class of Nonlinear Chaotic Models,” IEEE, Transactions on Circuits and Systems, Vol. 53, No. 9, pp. 1977-1988, 2006.
[15] R. Raoufi, and A. S. I. Zinober, “Smooth adaptive sliding mode observers in uncertain chaotic communication,” Int. J. of Systems Science, Vol. 38, No. 11, pp. 931-942, 2007.
[16] Z. Li, and S. Shi, “Robust adaptive synchronization of Rössler and Chen chaotic systems via slide technique,” Physics Letters A, Vol. 311, Issue 4-5, pp. 389-395, 2003.
[17] H. T. Yau, “Design of adaptive sliding mode controller for chaos synchronization with uncertainties,” Chaos, Solitons & Fractals, Vol. 22, Issue 2, pp. 341-347, 2004.
[18] J. J. Yan, Y. S. Yang, T. Y. Chiang, and C. Y. Chen, “Robust synchronization of unified chaotic systems via sliding mode control,” Chaos, Solitons & Fractals, Vol. 34, Issue 3, pp. 947-954, 2007.
[19] B. Wang, and G. Wen, “On the synchronization of uncertain master-slave chaotic systems with disturbance,” Chaos, Solitons & Fractals, Vol. 41, Issue 1, pp. 145-151, 2009.
[20] Q. Zhang, S. Chen, Y. Hu, and C. Wang, “Synchronizing the noise-perturbed unified chaotic system by sliding mode control,” Physica A, Vol. 371, Issue 2, pp. 317-324, 2006.
[21] C. F. Huang, K. H. Cheng, and J. J. Yan, “Robust chaos synchronization of four-dimensional energy resource systems subject to unmatched uncertainties,” Communications in Nonlinear Science and Numerical Simulation, Vol. 14, Issue 6, pp. 2784-2792, 2009.
[22] S. Chen, and J. Lü, “Synchronization of an uncertain unified chaotic system via adaptive control,” Chaos, Solitons & Fractals, Vol. 14, Issue 4, pp. 643-647, 2002.
[23] F. M. Moukam Kakmeni, S. Bowong, and C. Tchawoua, “Nonlinear adaptive synchronization of a class of chaotic systems,” Physics Letter A, Vol. 355, Issue 1, pp. 47-54, 2006.
[24] T. Botmart, and P. Niamsup, “Adaptive control and synchronization of the perturbed Chua''s system,” Mathematics and Computers in Simulation, Vol. 75, Issue 1-2, pp. 37-55, 2007.
[25] Y. Lei, K. L. Yung, and Y. Xu, “Chaos synchronization and parameter estimation of single-degree-of-freedom oscillators via adaptive control,” Journal of Sound and Vibration, Vol. 329, Issue 8, pp. 973-979, 2010.
[26] H. Zhang, X. K. Ma, and W. Z. Liu, “Synchronization of chaotic systems with parametric uncertainty using active sliding mode control,” Chaos, Solitons & Fractals, Vol. 21, Issue 5, pp. 1249-1257, 2004.
[27] G. H. Li, “Generalized projective synchronization of two chaotic systems by using active control,” Chaos, Solitons & Fractals, Vol. 30, Issue 1, pp. 77-82, 2006.
[28] M. Haeri, M. S. Tavazoei, and M. R. Naseh, “Synchronization of uncertain chaotic systems using active sliding mode control,” Chaos, Solitons & Fractals, Vol. 33, Issue 4, pp. 1230-1239, 2007.
[29] S. Bowong, and F.M. Moukam Kakmeni, “Synchronization of uncertain chaotic systems via backstepping approach,” Chaos, Solitons & Fractals, Vol. 21, Issue 4, pp. 999-1011, 2004.
[30] J. H. Park, “Synchronization of Genesio chaotic system via backstepping approach,” Chaos, Solitons & Fractals, Vol. 27, Issue 5, pp. 1369-1375, 2006.
[31] B. Wang, and G. Wen, “On the synchronization of a class of chaotic systems based on backstepping method,” Physics Letters A, Vol. 370, Issue 1, pp. 35-39, 2007.
[32] S. Bowong, “Adaptive synchronization of chaotic systems with unknown bounded uncertainties via backstepping approach,” Nonlinear Dynamics, Vol. 49, No. 1-2, pp. 59-70, 2007.
[33] X. Liao, and G. Chen, “On feedback-controlled synchronization of chaotic systems,” Int. J. of Systems Science, Vol 34, No 7, pp. 453-461, 2003.
[34] G. P. Jiang, and W. X. Zheng, “An LMI criterion for linear-state-feedback based chaos synchronization of a class of chaotic systems,” Chaos, Solitons & Fractals, Vol. 26, Issue 4, pp. 437-443, 2005.
[35] M. Rafikov, and J. Manoel Balthazar, “On control and synchronization in chaotic and hyperchaotic systems via linear feedback control,” Communications in Nonlinear Science and Numerical Simulation, Vol. 13, Issue 7, pp. 1246-1255, 2008.
[36] X. Wu, Z. Gui, Q. Lin, and J. Cai, “A new Lyapunov approach for global synchronization of non-autonomous chaotic systems,” Nonlinear Dynamics, Vol. 59, No. 3, pp. 427-432, 2010.
[37] H. K. Khalil, Nonlinear Systems, Third Edition, New Jersey: Prentice Hall, Inc., 2000.
[38] J. J. E. Slotine, and W. Li, Applied nonlinear control, New Jersey: Prentice Hall, 1991.
[39] M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design, New Jersey: John Wiley & Sons, 1995.
[40] K. S. Halle, C. W. Wu, M. Itoh, and L. O. Chua, “Spread specturm conmmunication through modulation of chaos,” Int. J. Bifurcation and Chaos, Vol. 3, No. 2, pp. 469-477, 1993.
[41] Z. He, K. Li, L. Yang, and Y. Shi, “A Robust Digital Secure Communication Scheme Based on Sporadic Coupling Chaos Synchronization,” IEEE Transactions on Circuits and Systems, Vol. 47, No. 3, pp. 397-403, 2000.
[42] X. Yu, and Y. Song, “Chaos synchronization via controlling partial state of chaotic systems,” Int. J. Bifurcation and Chaos, Vol. 11, No 6, pp. 1737-1741, 2001.
[43] S. J. Leon, Linear algebra with applications, New Jersey: Prentice Hall, 1999.
[44] C. Edwards, and S. K. Spurgeon, Sliding Mode Control: Theory and Applications, London: Taylor and Francis, 1998.
[45] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA, 1994.
[46] G. Tao, Adaptive control design and analysis, New Jersey: John Wiley & Sons, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔