|
[1]W. R. Curtice, “A MESFET model for use in the design of GaAs integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. 28, no. 5, pp. 448-456, 1980.
[2]W. R. Curtice and M. Ettenberg, “A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 33, pp. 1383-1394, 1985.
[3]A. Materka and T. Kacprzak, “Computer calculation of large-signal GaAs FET amplifier characteristics,” IEEE Trans. Microwave Theory Tech., vol. 33, pp. 129-135, 1985.
[4]Y. Tajima, B. Wrona, and K. Mishima, “GaAs FET large-signal model and its application to circuit designs,” IEEE Trans. Electron Dev., vol. 28, pp. 171-175, 1981.
[5]A. J. McCamant, G. D. McCormack, and D. H. Smith, “An improved GaAs MESFET model for SPICE,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 822-824, 1990.
[6]I. Angelov, H. Zirath, and N. Rosman, “A new empirical nonlinear model for HEMT and MESFET devices,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2258-2266, 1992.
[7]Fazal Ali, Aditya Gupta, HEMTs and HBTs: Devices, Fabrication and Circuits, Artech House, 1991.
[8]A. Ketterson, W. T. Masselink, J. S. Gedymin, J. Klem, W. Kopp, H. Morkoc, and K. R. Gleason, “Characterization of InGaAs/AlGaAs pseudomorphic modulation-doped field effect transistors,” IEEE Trans. Electron Dev., vol. 33, pp. 564-571, 1986.
[9]J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multi-layers,” I. Misfit dislocations, J. Crystal Grow., vol. 27, p. 118, 1974.
[10]J. M. Ballingall, P. Ho, G. J. Tessmer, P. A. Martin, N. Liewis, and E. L. Hall, “Novel pseudomorphic high electron mobility transistor structures with GaAs-In0.3Ga0.7As thinstrained superlattice active layers,” App. Phys. Lett., vol. 54, p. 2121, 1989.
[11]M. C. A. M. Koolen, J. A. M. Geelen, and M. P. J. G. Versleijen, “An improved de-embedding technique for on-wafer high-frequency characterization,” in Bipolar Circuits and Technology Meeting, Proceedings of the 1991, pp. 188-191, 1991.
[12]S. C. Cripps, RF Power Amplifier for Wireless Communications, Artech House, 1999.
[13]D. M. Pozar, Microwave Engineering, 3rd ed., New York: Wiley, 2005.
[14]M.-Y. Jeon, B.-G. Kim, Y.-J. Jeon, and Y.-H. Jeong, “A Technique for extracting small-signal equivalent-circuit elements of HEMTs,” IEICE trans. electronics, vol. 82, pp. 1968-1976, 1999.
[15]P. Andreas, G. Markus, and W. Dirk, “Small-signal and temperature noise model for MOSFETs,” IEEE Trans. Microwave Theory Tech., pp.1927-1934, 2002.
[16]G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1151-1159, 1988.
[17]M. Berroth and R. Bosch, “Broad-band determination of the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 891-895, 1990.
[18]O. T. Hausmi Yumiko, Matsunaga Nobutoshi, Kodera Hiroshi, “Analysis of the frequency dispersion of transconductance and drain-conductance in GaAs MESFETs,” IEICE Trans. Electronics (Japanese Edition), vol. J88-C, pp. 321-328, 2005.
[19]Y. Ohno, P. Francis, M. Nogome, and Y. Takahashi, “Surface-states effects on GaAs FET electrical performance,” IEEE Trans. Electron Dev., vol. 46, pp. 214-219, 1999.
[20]J. M. O''Callaghan and J. B. Beyer, “A large signal nonlinear MODFET model from small signal s-parameters,” in IEEE MTT-S Microwave Symp. Dig., vol. 1, pp. 347-350, 1989.
[21]C. I. Lee, and W. C. Lin, Y. T. Lee and Y. T. Lin “The RF I-V Curve for PHEMT through the Small Signal S-parameter Extraction Method,” PIERS Proceedings, pp. 381-384, July 5-8, Cambridge, USA 2010.
[22]C. C. Meng and G. H. Huang, “High frequency" I-V curves for GaAs MESFETs through unique determination of small signal circuit parameters at multiple bias points,” in Asia-Pacific Microwave Conf. 2001, vol.2 , pp. 709-711, 2001.
[23]Y. Hasumi, N. Matsunaga, T. Oshima, and H. Kodera, “Characterization of the frequency dispersion of transconductance and drain conductance of GaAs MESFET,” IEEE Trans. Electron Dev., vol. 50, pp. 2032-2038, 2003.
[24]L. Shih-Hsien and L. Chien-Ping, “Numerical analysis of frequency dispersion of transconductance in GaAs MESFETs,” IEEE Trans. Electron Dev., vol. 43, pp. 213-219, 1996.
[25]S. M. Sze, Semiconductor Devices Physics and Technology 2nd Edition, John Wiley, 2002.
[26]I. Angelov and H. Zirath, “A New empirical nonlinear model for HEMT devices,” Electronics Lett., vol. 28, pp. 140-142, Dec.1992.
[27]I. Angelov, L. Bengtsson, and M. Garcia, “Extensions of the Chalmers nonlinear HEMT and MESFET model,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1664-1674, Oct. 1996.
[28]I. Angelov, L. Bengtsson, and M. Garcia, “Extensions of the Chalmers nonlinear HEMT and MESFET model,” Microwave Theory and Tech., IEEE Trans., vol. 44, pp. 1664-1674, 1996.
[29]I. Angelov, N. Rorsman, J. Stenarson, M. Garcia, and H. Zirath, “An empirical table-based FET model,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2350-2357, Dec. 1999.
[30]Agilent-ADS Angelov Model Menu.
[31]C. Blanco, “Gain expansion and intermodulation in a MESFET amplifier,” Electronics Lett., vol. 15, pp. 31-32, 1979.
[32]N. B. De Carvalho and J. C. Pedro, “Multitone frequency-domain simulation of nonlinear circuits in large- and small-signal regimes,” IEEE Trans., Microwave Theory Tech., vol. 46, pp. 2016-2024, 1998.
[33]N. B. De Carvalho and J. C. Pedro, “Large- and small-signal IMD behavior of microwave power amplifiers,” IEEE Trans., Microwave Theory Tech., vol. 47, pp. 2364-2374, 1999.
|