(3.220.231.235) 您好!臺灣時間:2021/03/09 06:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李彥霆
研究生(外文):Yen-Ting Lee
論文名稱:砷化銦鎵假晶式高電子遷移率電晶體之特性分析:RFI-V曲線與高頻非線性模型建立
論文名稱(外文):Investigation on Device Characteristics of the InGaAs Pseudomorphic High Electron Mobility Transistors:RF I-V Curves and High Frequency Nonlinear Models Establishment
指導教授:李杰穎李杰穎引用關係
指導教授(外文):Chie-In Lee
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:99
中文關鍵詞:高頻非線性模型高頻非線性特性射頻電流-電壓曲線小訊號模型假晶式高電子遷移率電晶體
外文關鍵詞:High Frequency Nonlinear CharacteristicsPseudomorphic High Electron Mobility TransistorSmall Signal ModelsHigh Frequency Nonlinear ModelsRF I-V Curves
相關次數:
  • 被引用被引用:0
  • 點閱點閱:407
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:59
  • 收藏至我的研究室書目清單書目收藏:0
本論文將針對電晶體之高頻特性與大訊號操作下之非線性現象進行分析與探討。鑒於III-V族化合物半導體所具備之良好高頻特性,及其應用於高頻電路設計之優勢,本研究之待測元件採用0.15μm砷化銦鎵製程之假晶式高電子遷移率電晶體,由穩懋半導體公司提供。首先,以高頻量測萃取電晶體小訊號模型之各元件參數值,再進一步將各偏壓下之等效模型完整建立。根據內質元件物理意義及其與輸出電流之關係,將萃取之gm與gds透過積分與數學推導過程,建立電晶體之射頻電流-電壓曲線RF I-V,藉此完整的描述電晶體於高頻操作之輸出特性。
電晶體之非線性特性可歸因於非線性輸入電容Cgs與Cgd,以及非線性相依電流源所造成。本論文建立之高頻非線性模型以傳統Angelov模型為基礎,並且結合論文中提出之RF I-V與高頻量測所萃取之電晶體內質參數,將各非線性源於高頻操作之特性透過擬合的方式,以非線性方程式表達。藉此將電晶體之輸出特性完整的模型化,有效改善傳統非線性模型於高頻之應用。
再者,透過實驗數據以及模擬結果驗證模型之準確性。本論文建立之小訊號模型與高頻非線性模型皆與實驗結果有極佳的吻合度,較傳統非線性模型更準確表達電晶體輸出特性,成功的將高頻效應與非線性特性整合於模型中。
In this thesis, the investigation focuses on the analysis of the high frequency characteristics and the nonlinearity of the transistors. In view of the III-V semiconductors which have excellent high frequency performance and the advantage for high frequency circuit design, the 0.15μm InGaAs based pseudomorphic high electron mobility transistors provided by WIN semiconductor Corp. were used in this study. The high frequency measurement was utilized to extract both extrinsic and intrinsic components of the transistors, and further to establish the small signal equivalent model in each bias condition. According to the physical definition of the extracted gm, gds and the relationship with the output current, RF I-V curves could be determined through the integration procedure.
The nonlinearity of the transistors can be attributed to the nonlinear input capacitance Cgs and Cgd, and the voltage dependent current source. The high frequency nonlinear models proposed in this thesis were based on classic Angelov model. For the high frequency application, the frequency dependent characteristics of the nonlinear sources would be taken into consideration through the combination of the RF I-V curves and extracted intrinsic components. Thus, the nonlinearities could be able to describe by nonlinear function through the fitting process and model the output performance completely.
The accuracy of the models could be confirmed through the comparison between the simulation and the measurement result. Obviously, the high frequency models which include the high frequency effect and the nonlinear characteristics have excellent agreement with the experimental data.
目錄 I
圖目錄 III
表目錄 VI
第一章 緒論 1
1.1 研究動機 1
1.2 發展概述 2
1.3 論文架構 3
第二章 pHEMT特性分析與量測系統、去嵌化技術介紹 5
2.1 簡介 5
2.2 電晶體物理結構與特性 5
2.3 量測系統 9
2.3.1待測電晶體規格 9
2.3.2直流量測 11
2.3.3高頻小訊號量測 12
2.3.4高頻功率量測 14
2.3.5負載拉移量測 17
2.4 去嵌化技術 18
2.5 負載拉移量測原理 21
2.6 主動元件非線性特性 22
2.6.1 諧波失真(Harmonic Distortion) 22
2.6.2 1dB增益壓縮點 (1dB Compression Point;P1dB) 22
2.6.3 交互調變失真(Intermodulation Distortion;IMD) 24
2.6.4 三階截距點 (Third-Order Intercept Point;OIP3) 25
第三章 pHEMT小訊號模型之建立 27
3.1 簡介 27
3.2 小訊號等效模型架構分析 27
3.3 外質參數萃取 30
3.4 內質參數萃取 33
3.5 pHEMT小訊號模型驗證與分析 37
3.5.1 閘極寬度75μm之pHEMT小訊號模型建立與驗證 45
3.5.2 閘極寬度50μm之pHEMT小訊號模型建立與驗證 47
第四章 pHEMT高頻非線性模型與RF I-V之建立與驗證 49
4.1 簡介 49
4.2 RF-IV之建立與分析 49
4.3 高頻非線性模型介紹 57
4.4 高頻非線性模型之建立與分析 58
4.4.1 閘極寬度75μm之pHEMT高頻非線性模型建立與驗證 70
4.4.2 閘極寬度50μm之pHEMT高頻非線性模型建立與驗證 76
第五章 結論 82
參考文獻 83
[1]W. R. Curtice, “A MESFET model for use in the design of GaAs integrated circuits,” IEEE Trans. Microwave Theory Tech., vol. 28, no. 5, pp. 448-456, 1980.

[2]W. R. Curtice and M. Ettenberg, “A nonlinear GaAs FET model for use in the design of output circuits for power amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 33, pp. 1383-1394, 1985.

[3]A. Materka and T. Kacprzak, “Computer calculation of large-signal GaAs FET amplifier characteristics,” IEEE Trans. Microwave Theory Tech., vol. 33, pp. 129-135, 1985.

[4]Y. Tajima, B. Wrona, and K. Mishima, “GaAs FET large-signal model and its application to circuit designs,” IEEE Trans. Electron Dev., vol. 28, pp. 171-175, 1981.

[5]A. J. McCamant, G. D. McCormack, and D. H. Smith, “An improved GaAs MESFET model for SPICE,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 822-824, 1990.

[6]I. Angelov, H. Zirath, and N. Rosman, “A new empirical nonlinear model for HEMT and MESFET devices,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 2258-2266, 1992.

[7]Fazal Ali, Aditya Gupta, HEMTs and HBTs: Devices, Fabrication and Circuits, Artech House, 1991.

[8]A. Ketterson, W. T. Masselink, J. S. Gedymin, J. Klem, W. Kopp, H. Morkoc, and K. R. Gleason, “Characterization of InGaAs/AlGaAs pseudomorphic modulation-doped field effect transistors,” IEEE Trans. Electron Dev., vol. 33, pp. 564-571, 1986.

[9]J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multi-layers,” I. Misfit dislocations, J. Crystal Grow., vol. 27, p. 118, 1974.

[10]J. M. Ballingall, P. Ho, G. J. Tessmer, P. A. Martin, N. Liewis, and E. L. Hall, “Novel pseudomorphic high electron mobility transistor structures with GaAs-In0.3Ga0.7As thinstrained superlattice active layers,” App. Phys. Lett., vol. 54, p. 2121, 1989.

[11]M. C. A. M. Koolen, J. A. M. Geelen, and M. P. J. G. Versleijen, “An improved de-embedding technique for on-wafer high-frequency characterization,” in Bipolar Circuits and Technology Meeting, Proceedings of the 1991, pp. 188-191, 1991.

[12]S. C. Cripps, RF Power Amplifier for Wireless Communications, Artech House, 1999.

[13]D. M. Pozar, Microwave Engineering, 3rd ed., New York: Wiley, 2005.

[14]M.-Y. Jeon, B.-G. Kim, Y.-J. Jeon, and Y.-H. Jeong, “A Technique for extracting small-signal equivalent-circuit elements of HEMTs,” IEICE trans. electronics, vol. 82, pp. 1968-1976, 1999.

[15]P. Andreas, G. Markus, and W. Dirk, “Small-signal and temperature noise model for MOSFETs,” IEEE Trans. Microwave Theory Tech., pp.1927-1934, 2002.

[16]G. Dambrine, A. Cappy, F. Heliodore, and E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1151-1159, 1988.

[17]M. Berroth and R. Bosch, “Broad-band determination of the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 891-895, 1990.

[18]O. T. Hausmi Yumiko, Matsunaga Nobutoshi, Kodera Hiroshi, “Analysis of the frequency dispersion of transconductance and drain-conductance in GaAs MESFETs,” IEICE Trans. Electronics (Japanese Edition), vol. J88-C, pp. 321-328, 2005.

[19]Y. Ohno, P. Francis, M. Nogome, and Y. Takahashi, “Surface-states effects on GaAs FET electrical performance,” IEEE Trans. Electron Dev., vol. 46, pp. 214-219, 1999.

[20]J. M. O''Callaghan and J. B. Beyer, “A large signal nonlinear MODFET model from small signal s-parameters,” in IEEE MTT-S Microwave Symp. Dig., vol. 1, pp. 347-350, 1989.

[21]C. I. Lee, and W. C. Lin, Y. T. Lee and Y. T. Lin “The RF I-V Curve for PHEMT through the Small Signal S-parameter Extraction Method,” PIERS Proceedings, pp. 381-384, July 5-8, Cambridge, USA 2010.

[22]C. C. Meng and G. H. Huang, “High frequency" I-V curves for GaAs MESFETs through unique determination of small signal circuit parameters at multiple bias points,” in Asia-Pacific Microwave Conf. 2001, vol.2 , pp. 709-711, 2001.

[23]Y. Hasumi, N. Matsunaga, T. Oshima, and H. Kodera, “Characterization of the frequency dispersion of transconductance and drain conductance of GaAs MESFET,” IEEE Trans. Electron Dev., vol. 50, pp. 2032-2038, 2003.

[24]L. Shih-Hsien and L. Chien-Ping, “Numerical analysis of frequency dispersion of transconductance in GaAs MESFETs,” IEEE Trans. Electron Dev., vol. 43, pp. 213-219, 1996.

[25]S. M. Sze, Semiconductor Devices Physics and Technology 2nd Edition, John Wiley, 2002.

[26]I. Angelov and H. Zirath, “A New empirical nonlinear model for HEMT devices,” Electronics Lett., vol. 28, pp. 140-142, Dec.1992.

[27]I. Angelov, L. Bengtsson, and M. Garcia, “Extensions of the Chalmers nonlinear HEMT and MESFET model,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 1664-1674, Oct. 1996.

[28]I. Angelov, L. Bengtsson, and M. Garcia, “Extensions of the Chalmers nonlinear HEMT and MESFET model,” Microwave Theory and Tech., IEEE Trans., vol. 44, pp. 1664-1674, 1996.

[29]I. Angelov, N. Rorsman, J. Stenarson, M. Garcia, and H. Zirath, “An empirical table-based FET model,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2350-2357, Dec. 1999.

[30]Agilent-ADS Angelov Model Menu.

[31]C. Blanco, “Gain expansion and intermodulation in a MESFET amplifier,” Electronics Lett., vol. 15, pp. 31-32, 1979.

[32]N. B. De Carvalho and J. C. Pedro, “Multitone frequency-domain simulation of nonlinear circuits in large- and small-signal regimes,” IEEE Trans., Microwave Theory Tech., vol. 46, pp. 2016-2024, 1998.

[33]N. B. De Carvalho and J. C. Pedro, “Large- and small-signal IMD behavior of microwave power amplifiers,” IEEE Trans., Microwave Theory Tech., vol. 47, pp. 2364-2374, 1999.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 盧倩儀,〈發展中的「人類安全」概念及其在歐盟非法移民問題上之適用〉,《問題與研究》,臺北:政治大學,第46卷,第4期,2007年。
2. 蔡育岱、譚偉恩,〈從「國家」到「個人」:人類安全概念之分析〉,《問題與研究》,臺北:政治大學,第47卷,第1期,2008年。
3. 蔡育岱、譚偉恩,〈再思人類安全研究〉,《淡江人文社會學刊》,臺北:淡江大學,第32期,2008年。
4. 廖安定,〈農業政策與農業法規〉,《農政與農情》,臺北;行政院農業委員會,103期,2001年1月。
5. 李增宗、陳文德,〈建立我國糧食安全體系之探討〉,《農政與農情》,臺北:行政院農業委員會,287期,1996年8月。
6. 蘇宗振,〈氣候變遷下臺灣糧食生產因應對策〉,《農政與農情》,200期,2009年2月。
7. 謝和霖,〈糧食、能源與安全〉,《看守臺灣》,臺北,第10卷第1期,2008年。
8. 蕭彩鳳,〈臺灣、日本、韓國在1974年與近年能源危機期間之經濟與物價〉,《農政與農情》,臺北;行政院農業委員會,第196期,2008年10月。
9. 陳牧民,〈當代國際安全理論中的主權意涵〉,《全球政治評論》,台中:中興大學,第二十二期,2008年。
10. 劉志偉,〈國際農糧體制與臺灣的糧食依賴:戰後臺灣養豬業的歷史考察〉,《臺灣史研究》,臺北:中央研究院臺灣史研究所,第16卷第二期,2009年6月。
11. 莊純琪,高秋芳,蔡嘉寅,〈全球環境與農業面臨之挑戰〉,《農政與農情》,188期,2008年2月。
12. 沈芝貝,〈淺淡氣候變遷對農業生產之影響〉,《全球變遷通訊雜誌》,臺北:臺灣大學,第56期,1996。
13. 李蓮生,〈國際重要農情資訊〉,《農政與農情》,臺北:行政院農業委員會,208期,2009年10月。
 
系統版面圖檔 系統版面圖檔