(3.239.192.241) 您好!臺灣時間:2021/03/02 18:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉建廷
研究生(外文):Jian-Ting Liu
論文名稱:利用接收訊號強度與抵達時間之資料融合進行非視線傳播誤差抑制與無線定位
論文名稱(外文):Data Fusion of RSS and TOA Measurements for NLOS Mitigation and Wireless Location
指導教授:萬欽德
指導教授(外文):Chin-Der Wann
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:63
中文關鍵詞:訊號抵達時間卡爾曼濾波器非視線誤差接收訊號強度交互式多模演算法
外文關鍵詞:IMMRSSTOANLOSKalman filter
相關次數:
  • 被引用被引用:0
  • 點閱點閱:154
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在定位演算法中,影響定位精準度的因素有非視線傳播 (Non-Line of Sight, NLOS) 與多重路徑干擾等。因此本論文提出針對非視線傳播誤差進行抑制之演算法,首先利用基於訊號抵達時間 (Time of Arrival, TOA) 量測值之改良型偏移式卡爾曼濾波器 (Improved Biased Kalman filter, IBKF) 進行非視線傳播誤差之鑑別與抑制,藉由非視線傳播誤差成份之訊號標準差遠大於一般量測標準差的特性,結合假設檢定法與滑動視窗檢查法達到即時之非視線傳播誤差鑑別。在獲得目前所處之視線狀態後,回授標準差計算值與鑑別結果來切換偏移/非偏移 (biased/unbiased) 卡爾曼濾波器進行估測,但估測值依然會受到非視線傳播誤差的些微影響。另一方面,基於接收訊號強度 (Received Signal Strength, RSS) 量測值之擴展式卡爾曼濾波器 (Extended Kalman Filter, EKF) 是針對事先已知所處環境模型而設計之,因此非視線傳播誤差之抑制效果會比較顯著。然而即使 EKF-RSS 擁有較佳之抑制效果,卻在非視線傳播誤差之鑑別部分有錯誤率過高的缺點存在。此外, EKF-RSS 在初始即為非視線傳播狀態時,必須花費較長的一段時間才能夠使其估測值達到收斂。經過兩者之分析比較,本論文利用 IBKF-TOA 與 EKF-RSS 能夠互補其缺點的特性,提出將 IBKF-TOA 與 EKF-RSS 應用於交互式多模演算法 (Interacting Multiple Model, IMM) 中的濾波器模組,並且有別於傳統之 IMM 架構,而在 IMM 系統中加入非視線傳播誤差之鑑別部分,藉由 IBKF-TOA 之良好鑑別結果與交互式多模演算法中的軟性切換,達到良好的整體輸出結果。論文中以超寬頻 (Ultra-Wideband, UWB) 訊號環境進行模擬,探討當無線定位系統中的基地台遭受到非視線傳播誤差影響時,對於本論文提出基於交互式多模演算法之資料融合架構、 IBKF-TOA 與 EKF-RSS 三者進行比較。由模擬結果可以得知,本論文所提出之架構能較有效的抑制非視線傳播誤差,並且透過資料融合提升定位估測與目標物追蹤之精準度。
The major problems encountered in wireless location are the effects caused by non-line of sight (NLOS) propagation and multipath interference. In the thesis, we propose an approach to mitigate NLOS error. First of all, we use improved biased Kalman filter (IBKF) based on time of arrival (TOA) measurement to identify and mitigate NLOS error. Applying the statistic characteristic that the standard deviation of the NLOS propagation errors is generally much larger than that of measurement noises in the LOS condition, we combine hypothesis test and sliding window to identify NLOS error. According to the feedback identification and the calculated standard deviation, IBKF switches biased or unbiased to process TOA measurement. Nevertheless, the performance of IBKF-TOA is still affected slightly by NLOS error. Since extended Kalman filter (EKF) based on received signal strength (RSS) measurement is designed for prespecified environments, the effect of NLOS mitigation is more obvious. Moreover, EKF-RSS not only exists higher error probability in NLOS identification, but also needs longer time to converge in the cases that start with NLOS. Comparing IBKF-TOA with EKF-RSS, we adopt interacting multiple model (IMM) in the proposed data fusion structure for processing TOA and RSS measurements. In the proposed scheme, we reserve the basic IMM structure and add the step of NLOS identification into basic IMM structure. By accurate NLOS identification results and soft decision of IMM, the proposed scheme will switch to adequate filter mode and obtain better estimation. With simulation in UWB channel, the analysis and performance evaluation show advantages and disadvantages of using IBKF-TOA, EKF-RSS, and proposed scheme. Simulation results reveal that NLOS error can be mitigated effectively by data fusion of TOA and RSS measurements and can achieve high accuracy in positioning and tracking.
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 非視線傳播誤差之鑑別與抑制. . . . . . . . . . . . . . . . . . 4
2.1 量測模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.1 距離量測模型. . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 訊號衰減模型. . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 非視線傳播誤差之鑑別. . . . . . . . . . . . . . . . . . . . . 5
2.2.1 使用卡爾曼濾波器之資料平滑. . . . . . . . . . 6
2.2.2 標準差假設檢定法結合滑動視窗之非視線傳
播誤差鑑別. . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 非視線傳播誤差之抑制. . .. . . . . . . . . . . . . . . . . . 10
2.3.1 偏移式卡爾曼濾波器. . . . . . . . . . . . . . . . . 11
2.3.2 改良型偏移式卡爾曼濾波器. .. . . . . . . . . . 12
2.3.3 擴展式卡爾曼濾波器. . . . . . . . . . . . . . . . . 14
3 使用基於IMM 演算法之卡爾曼濾波器抑制非視線傳播誤
差. . . . . . . . . . 17
3.1 基於TOA 與RSS 量測值之卡爾曼濾波器分析與比
較. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
3.2 利用IMM 結合TOA 與RSS 量測值之資料融合架
構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 電腦模擬與分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1 超寬頻系統之非視線傳播模型. . . . . . . . . . . . . . . 27
4.2 單一基地台估測結果之模擬與分析. . . . . . . . . . . 30
4.3 結合所有基地台定位結果之模擬與分析. . . . . . . 33
5 結論與建議. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
[1] C.-D. Wann and H.-Y. Lin, “Hybrid TOA/AOA estimation error test and non-line of sight identification in wireless location,” Wireless Communications and Mobile Computing, vol. 9, no. 6, pp. 859–873, 2009.
[2] S. Venkatraman and J. Caffery, Jr., “Hybrid TOA/AOA techniques for mobile location in non-line-of-sight environments,” in Proceedings of Wireless Communications and Networking Conference, vol. 1, 2004, pp. 274–278.
[3] C.-D. Wann and H.-C. Chin, “Hybrid TOA/RSSI wireless location with unconstrained nonlinear optimization for indoor UWB channels,” in Proceedings of IEEE Wireless Communications and Networking Conference, 2007, pp. 3940–3945.
[4] B.-S. Chen, C.-Y. Yang, F.-K. Liao, and J.-F. Liao, “Mobile location estimator in a rough wireless environment using extended Kalman-based IMM and data fusion,” IEEE Transactions on Vehicular Technology, vol. 58, no. 3, pp. 1157–1169, 2009.
[5] C.-S. Hsueh, “Distributed TDOA/AOA location and data fusion methods with NLOS error mitigation in UWB systems,” Master’s thesis, Department of Electrical Engineering of National Sun Yat-Sen University Kaohsiung, Taiwan, Republic of China, 2006.
[6] L. Cong and W. Zhuang, “Hybrid TDOA/AOA mobile user location for wideband CDMA cellular systems,” IEEE Transactions on Wireless Communications, vol. 1, no. 3, pp. 439–447, 2002.
[7] M. McGuire, K. Plataniotis, and A. Venetsanopoulos, “Data fusion of power and time measurements for mobile terminal location,” IEEE Transactions on Mobile Computing, vol. 4, no. 2, pp. 142–153, 2005.
[8] M. Wylie and J. Holtzman, “The non-line of sight problem in mobile location estimation,” in Proceedings of IEEE International Conference on Universal Personal Communications, vol. 2, 1996, pp. 827–831.
[9] J. Borras, P. Hatrack, and N. Mandayam, “Decision theoretic framework for NLOS identification,” in Proceedings of IEEE 48th Vehicular Technology Conference, vol. 2, 1998, pp. 1583–1587.
[10] B. L. Le, K. Ahmed, and H. Tsuji, “Mobile location estimator with NLOS mitigation using Kalman filtering,” in Proceedings of IEEE Wireless Communications and Networking, vol. 3, 2003, pp. 1969–1973.
[11] C.-D. Wann and C.-S. Hsueh, “NLOS mitigation with biased Kalman filters for range estimation in UWB systems,” in Proceedings of IEEE Region 10
Conference, 2007, pp. 1–4.
[12] J.-F. Liao and B.-S. Chen, “Robust mobile location estimator with NLOS mitigation using interacting multiple model algorithm,” IEEE Transactions on Wireless Communications, vol. 5, no. 11, pp. 3002–3006, 2006.
[13] H.-K. Chiang, “Interacting multiple model algorithm for NLOS mitigation in wireless location,” Master’s thesis, Department of Electrical Engineering of National Sun Yat-Sen University Kaohsiung, Taiwan, Republic of China, 2009.
[14] T. Rappaport, Wireless Communication: Principles and Practice, 2nd ed. Prentice Hall, 1996.
[15] S. Ghassemzadeh, L. Greenstein, A. Kavcic, T. Sveinsson, and V. Tarokh, “UWB indoor path loss model for residential and commercial buildings,” in
Proceedings of Vehicular Technology Conference, vol. 5, 2003, pp. 3115–3119.
[16] V. Erceg, L. Greenstein, S. Tjandra, S. Parkoff, A. Gupta, B. Kulic, A. Julius, and R. Jastrzab, “An empirically-based path loss model for wireless channels in suburban environments,” in Proceedings of Global Telecommunications Conference, vol. 2, 1998, pp. 922–927.
[17] S. Ghassemzadeh, R. Jana, C. Rice, W. Turin, and V. Tarokh, “A statistical path loss model for in-home UWB channels,” in Proceedings of Ultra Wideband Systems and Technologies, 2002, pp. 59–64.
[18] P.-C. Chen, “A cellular based mobile location tracking system,” in Proceedings of IEEE 49th Vehicular Technology Conference, vol. 3, 1999, pp. 1979–1983.
[19] P.-C. Chen, “A non-line-of-sight error mitigation algorithm in location estimation,” in Proceedings of the IEEE Wireless Communications and Networking Conference, vol. 1, Sept. 1999, pp. 316–320.
[20] L. Cong and W. Zhuang, “Non-line-of-sight error mitigation in TDOA mobile location,” in Proceedings of IEEE Global Telecommunications Conference,
vol. 1, 2001, pp. 680–684.
[21] L. Cong and W. Zhuang, “Nonline-of-sight error mitigation in mobile location,” IEEE Transactions on Wireless Communications, vol. 4, pp. 560–573, March 2005.
[22] L. Jiao, J. Xing, X. Zhang, C. Zhao, and J. Zhang, “LCC-Rwgh: A NLOS error mitigation algorithm for localization in wireless sensor network,” in Proceedings of IEEE International Conference on Control and Automation, 2007, pp. 1354–1359.
[23] Y. He, H.-Y. Hu, and S. Zhou, “A TOA based believable factor mobile location algorithm,” in Proceedings of IEEE Wireless Communications and Networking Conference, vol. 1, 2004, pp. 260–263.
[24] K. Yu and Y. Guo, “Statistical NLOS identification based on AOA, TOA, and signal strength,” IEEE Transactions on Vehicular Technology, vol. 58, no. 1,
pp. 274–286, 2009.
[25] S. M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory—Vol. II. Englewood Cliffs, New Jersey, USA: Prentice Hall, 1998.
[26] S. M. Kay, Fundamentals of Statistical Signal Processing : Estimation Theory. Prentice Hall, 1993.
[27] C.-D. Wann and W.-T. Liu, “Positioning and tracking with NLOS mitigation using extended Kalman filter in UWB systems,” in Proceedings of the
2005 Interational Conference on Pervasive Systems and Computing, Las Vegas, Nevada, USA, Jun., 2005.
[28] I. Guvenc, C.-C. Chong, and F. Watanabe, “NLOS identification and mitigation for UWB localization systems,” in Proceedings of IEEE Wireless Communications and Networking Conference, 2007, pp. 1571–1576.
[29] Y. Bar-Shalom, K. Chang, and H. Blom, “Tracking a maneuvering target using input estimation versus the interacting multiple model algorithm,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 25, no. 2, pp. 296–300, 1989.
[30] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, “Interacting multiple model methods in target tracking: A survey,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 34, no. 1, pp. 103–123, 1998.
[31] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with Application to Tracking and Navigation: Theory, Algorithms and Software. John Wiley, 2001.
[32] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE Journal on Selected Areas in Communications, vol. 5, no. 2, pp.
128–137, 1987.
[33] S. S. Ghassemzadeh and V. Tarokh, “The ultra-wideband indoor path loss model,” IEEE P802.15-02/277r1-SG3a, Tech. Rep., July 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 邱玉蟾(2006)。澳洲少子化時代之學校裁併調整一個案審視。教育資料與研究雙月刊,74,151-166。
2. 邱玉蟾(2002)。高中職社區化之推動與發展。教育資料集刊,27,127-155。
3. 張明輝(1999)。企業組織革新對學校組織再造的啟示。教師天地,98,4-9。
4. 吳清山(1999)。跨世紀學校組織再造之重要課題及其策略。教師天地,98,4-9。
5. 顏朱吟(2004)。大學整併政策之組織理論應用及問題探討。學校行政雙月刊,32,56-63。
6. 吳政達(2006)。少子化趨勢下國民中小學學校經濟規模政策之研究。教育政策論壇,9(1),23-45。
7. 何金針(2003)。教育市場與教育政策。學校行政雙月刊,28,29-44。
8. 李坤崇(2006)。高中職發展與轉型之優、劣勢與具體行為。教育研究月刊,149,70-93。
9. 陳伯璋(2003)。大學整併的省思與前瞻。文教新潮,8(4),1-90。
10. 徐易男(2005)。學校組織變革下的火線領導。國教天地,159,96-100。
11. 祝若穎(2009)。日本高等教育對少子化衝擊的因應及其啟示。教育資料與研究雙月刊,86,175-198。
12. 曾瑞譙、張文軫、郭姿秀(2009)。少子化對技專校院經營管理壓力與應策略之分析。教育研究與發展期刊,5(3),175-206。
13. 林海清(2006)。少子化效應對技職教育發展之衝擊與因應策略。教育研究月刊,151,32-45。
14. 李坤崇(2006)。高中職發展與轉型情境分析。教育研究月刊,149,15-32。
 
系統版面圖檔 系統版面圖檔