(3.238.186.43) 您好!臺灣時間:2021/03/02 09:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許正杰
研究生(外文):Cheng-Jie Hsu
論文名稱:前瞻行車環境偵測與智慧車控研究藉由電腦視覺律動分析
論文名稱(外文):Advanced Driving Environment and Intelligent Vehicle Control by Visual Rhythm Analysis
指導教授:葉家宏葉家宏引用關係
指導教授(外文):Chia-Hung Yeh
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:71
中文關鍵詞:視覺律動行車速度50公尺安全距離車道變換
外文關鍵詞:rhythmmonitoringon-roadvehicle event detection
相關次數:
  • 被引用被引用:0
  • 點閱點閱:167
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的主要動機為提出一簡單且具可靠性的方法,用來偵測道路上的車輛是否發生緊急危險事件,並且主動的提醒駕駛者預防車禍的發生。利用電腦視覺律動概念,在各個影像畫面中將所感興趣的區域藉由虛擬掃描線取得律動資料,藉此,此連續影像將被簡化成較簡單的畫面資料(只記錄虛擬掃描線上的律動資料),並被記錄成具時間性的車輛狀態。因此,經過每組律動的分析與統計,我們的系統提出三種潛在地危險事件偵測:車道變換(Changing Lane)、50公尺安全距離(50m Safe Distance)和行車速度的顯示(Speed Display)。我們所提出的機制可偵測並監控道路上的車輛狀態,不僅預防車禍的發生,亦可增加交通的安全性。最後,實驗結果亦顯示此機制針對車輛事件的偵測具有相當的可靠性。
The motivation of this paper is to propose a simple and reliable method to identify on-road vehicle events, particularly in the driving situations. A content rhythm is extracted by applying a virtual line lies on the same position of each frame. Thereupon a simplified representation of a continuous video is to record the temporal information of vehicle status. Thus, vehicle situations such as changing lane, safe distance and speed display can be detected instantly by analyzing the statistical characteristics of content rhythm. The proposed method can not only prevent accidents but also improve the traffic safety by monitoring the on-road vehicle status. Experimental results show the proposed method is reliable for vehicle event detection.
英文摘要 i
中文摘要 ii
目錄 iii
圖目錄 v
第一章 緒論 1
1.1智慧型運輸系統的發展 3
1.2智慧型運輸系統相關應用 4
1.3研究動機與目的 6
1.4論文架構 8
第二章 影像理論與文獻回顧 9
2.1電腦視覺技術的智慧運輸系統研究 10
2.2相關文獻探討 14
第三章 藉由電腦視覺律動分析車輛事件的偵測 17
3.1 視覺律動之概念 19
3.2車道線擷取 22
3.3 安全距離的偵測 27
3.4 行車速度的顯示 30
第四章 車輛偏移量之定義與分析 32
4.1 偵測車輛的偏移 42
4.2 車輛偏移資訊之應用 44
第五章 實驗結果 46
5.1 Directshow實驗平台 47
5.2 車輛事件偵測的實驗結果 49
5.3車輛偏移的實驗分析結果 54
第六章 結論與展望 57
參考文獻 59
[1] J. Y. Yi, S. H. Yang, I. G. Jang , J. G. Chung, and M. S. Lim(2007), “Automobile Advance Alarm System Based on Monocular Vision Processing,” IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, pp. 428-432.
[2] U. Franke, H. Loose, C. Knöppel(2007), “Lane Recognition on Country Roads,” IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, pp. 99–140.
[3] S. D. Buluswar and B. A. Draper, “Color machine vision for autonomous vehicles,” Engineering Applications of Artificial Intelligence, vol. 11, no. 2, pp. 245-256, April 1998.
[4] R. Mandelbaum, L. McDowell, L. Bogoni, B. Reich and M. Hansen, “Real-time stereo processing, obstacle detection, and terrain estimation from vehicle-mounted stereo cameras,” in Proceedings of Applications of Computer Vision, pp. 288-289, October 1998.
[5] M. Bertozzi and A. Broggi, “GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection,” IEEE Transactions on Image Processing, vol. 7, issue 1, pp. 62-81, January 1998.
[6] H. Nishihara, A. Kojima, H. Murakoshi, and S. Ishijima, “The multi-layer neural network applied to a car detection system,” Proc. IEEE Int. Workshop on Robot and Human Communication, 1992, pp.88-92.
[7] U. Handmann, T. Kalinke, C. Tzomakas, M. Werner, and W.V. Seelen, “An image processing system for driver assistance,” Image and Vision Computing, Vol. 18, 2000, pp.367-376.
[8] V. Graefe and W. Efenberger, “A novel approach for the detection of vehicles on freeways by real-time vision,” Proc. IEEE Intelligent Vehicles Symposium, 1996, pp. 363-368.
[9] S.Kyo, T.Koga, K.Sakurai, and S.Okazaki, “A robust vehicle detecting and tracking system for wet weather conditions using the IMAP-VISION image processing board,” Proc. Int. Conf. on Intelligent Transportation Systems, 1999, pp.423-428.
[10] Jung, C.R.; Kelber, C.R., “A lane departure warning system based on a linear-parabolic lane model,” IEEE CNF,P.891-895, 2004.
[11] M. Bertozzi, and A. Broggi, “GOLD: a parallel real-time stereo vision system for generic obstacle and lane detection,” IEEE Trans. on Image Processing, Vol.7, Issue: 1, 1998, pp.62-81
[12] S.G. Jeong, C.S. Kim, D.Y. Lee, S.K. Ha, D.H. Lee, and M.H. Lee, “Real-time lane detection for autonomous vehicle,” Proc. IEEE Int. Symposium. on Industrial Electronics, Vol. 3, 2001, pp.1466-1471.
[13] A. Takahashi, Y. Ninomiya, M. Ohta, M. Nishida, and M. Takayama, “Rear view lane detection by wide angle camera,” Proc. IEEE Intelligent Vehicles Symposium, Vol. 1, 2002, pp. 148-153.
[14] K. Ishikawa, K. Odagiri, K. Kobayashi, and K. Watanabe, “Lane detection by using omni-directional camera for outdoor terrains,” Proc. 41st SICE Annual Conference, Vol. 2, 2002, PP. 1334-1335.
[15] J. Gong, A. Wang, Y. Zhai, G. Xiong, P. Zhou,and H. Chen,(2008) “High Speed Lane Recognition under Complex Road Conditions,’’ IEEE Intelligent Vehicles Symposium Eindhoven University of Technology Eindhoven, The Netherlands, 2008.
[16] S. G. Foda* and A. K. Dawoud(2001), “Highway Lane Boundary Determination For Autonomous Navigation ,” Communications, Computers and signal Processing.
[17] S. G. Foda* and A. K. Dawoud and A. S. Tolba**(1998), “A Robust Neural Network Multi-Lane Recognition System, ’’ This paper appears in: Microelectronics .
[18] J. W. Lee, C.D. Kee and Un Kun Yi(2003), “A New Approach for LaneDeparture Identification,’’ Intelligent Vehicles Symposium, IEEE.
[19] M.Y. Chern and P.C. Hou(2003), “The Lane Recognition and Vehicle Detection at Night for A Camera-Assisted Car on Highway,”Department of Electrical Engineering National Chung Cheng University Min-Hsiung, Chia-Yi, Taiwan Proceedings of the 1003 IEEE Intwnalional Conference on Robotics & Amtomation Taipei.
[20] S. Kim, J. Park, S. I. Cho, S. Park, and K.H.Choi(2007), “A Framework for the Development of Robust Lane Recognition Systems,’’ Intelligent Transportation Systems Conference.
[21] H. Kim, J. Lee and S. M.-H. Song, “An efficient graphical shot verifier incorporating visual rhythm,” in Proceedings of IEEE International Conference on Multimedia Computing and Systems, vol. 1, pp. 827-834, June 1999.
[22] 中華民國交通部機動車輛登記歷年總數,http://交通部.tw/mocwebGIP/wSite/lp?ctNode=162&mp=1
[23] 交通部台灣區國道高速公路局,http://www.freeway.gov.tw/Publish.aspx?cnid=239
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔