(3.237.97.64) 您好!臺灣時間:2021/03/05 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐豫偉
研究生(外文):Yu-Wei Hsu
論文名稱:奠基於標準化電磁鋼片模組量測值之開關磁阻電動機鐵損估算流程
論文名稱(外文):An Iron Loss Estimation Process Supported by Modularized Iron Loss Datasheets of Electromagnetic Steel for Switched-Reluctance Machine
指導教授:劉承宗劉承宗引用關係
指導教授(外文):Cheng-Tsung Liu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:電機工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:90
中文關鍵詞:探針法磁滯模型電磁鋼片鐵損
外文關鍵詞:needle probe methodhysteresis modelelectromagnetic steeliron loss
相關次數:
  • 被引用被引用:1
  • 點閱點閱:199
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對採用電磁鋼片製作不同結構之電機,提供一套快速的鐵損估算流程,以改善因電機不規則的結構使磁通密度不均勻分布,導致電機成品的鐵損值與以單一電磁鋼片估算的鐵損值產生的落差,此乃流程的目的所在。流程上,首先以電磁鋼片製作出可組合成電機結構的幾種標準化模組,然後依其所需製妥具封閉磁路架構的實驗平台,並提供電機操作下各式磁場環境。模組上各個區域的平均磁通密度以探針量測方式取到,再經由磁滯曲線Jiles and Atherton model得到其相對應的磁場強度,以此計算出各模組的鐵損值。最後將量測結果建構成一個模組鐵損資料庫,並對擬製作之電機,透過組合的方式估算出電機的鐵損值。研究過程中將以開關磁阻電動機為例,配合以模組資料庫中所建構的模組內容及電動機之結構,以組合估算出整體電動機之鐵損。本研究建構的成果,深信能在爾後電動機之設計與製造上,提供一個具有參考價值及可之信賴的流程。
The objective of this thesis is to provide a quick process to estimate iron losses of the electric machines with various structures that employ electromagnetic steels in their designs. Due to non-uniform distributed operational magnetic flux densities resulted from the machine structures, the iron losses of machines can not be properly estimated. The aim of the scheme is to modify the deviations among the measurements and the calculations. At first, several standardized steel modules that can be used to assemble the machine structures are established, then a test-bed with closed magnetic path to supply operational magnetic field inside those electric machines is constructed. To calculate the iron loss of each module, the averaged flux densities for each area of the module are measured by needle probe method, and the corresponding magnetic field intensities are calculated from Jiles and Atherton (J-A) model hysteresis model. Finally, the iron loss datasheets for each module are constructed by these measurements, and the iron losses of machines are estimated through assembling the modules. In this thesis, a switched-reluctance machine (SRM) is selected for assessment comparisons, and its iron loss can be calculated through datasheets according to the machine structure. It is believed that the findings of this study can provide a valuable reference and a reliable process in motor designing and manufacturing.
目錄

頁次
中文摘要 I
英文摘要 II
目錄 III
圖目錄 V
表目錄 VIII
縮寫及符號對照表 IX

第一章 緒論 1
1.1 前言 1
1.2 研究背景與動機 3
1.3 研究重點 6

第二章 探針法量測及鐵損計算之原理 8
2.1 探針法之原理 8
2.2 J-A模型 12
2.3 鐵損計算原理 18
2.4 鐵損估算流程 21

第三章 標準化電磁鋼片模組的建立 24
3.1 測量平台架構 24
3.2 模組的建立與量測 27
3.3 資料庫結果分析 30

第四章 開關磁阻電動機之磁通分布估算 35
4.1 開關磁阻電動機規格 35
4.2 磁通分布探討 37
4.3 磁通分布估算驗證 46
4.3.1 定轉子齒極間氣隙 之磁通 47
4.3.2 定子齒極之磁通分布 50
4.3.3 定子背鐵處之磁通分布 51
4.3.4 定子齒極基部之磁通分布 52
4.3.5 轉子之磁通分布 53
4.3.6 磁通分布估算結果分析 55

第五章 鐵損估算評估 59
5.1 估算模組的選取 59
5.2 鐵損估算結果分析 68

第六章 結論與建議 71

參考文獻 73

作者自述 76

[1]台灣電力公司/經營績效/統計資料/歷年平均電價,http://www.taipower.com.tw/,2010/8/17.
[2]經濟部能源局/國際原油價格查詢/年均價查詢,http://www.moeaboe.gov.tw/oil102,2010/8/17.
[3]台灣電力公司/經營績效/統計資料/歷年行業用電,http://www.taipower.com.tw/TaipowerWeb//upload/files/14/main_2_5_2_4.pdf,2010/8/17.
[4]郭欣弘,“馬達動力系統節能選用之探討,”機械工業雜誌229期,pp. 109-112,97年2月號.
[5]T. L. Mthombeni, P. Pillay, and R. M. W. Strnat, “New Epstein Frame for lamination core loss measurements under high frequencies and high flux densities,” IEEE Trans. Energy Conv., vol. 22, no. 3, pp. 614-620, Sept. 2007.
[6]W. Salz, “A two-dimensional measuring equipment for electrical steel,” IEEE Trans. Magn., vol. 30, no. 3, pp. 1253-1257, May 1994.
[7]A. J. Moses and B. Thomas, “Measurement of rotating flux in silicon iron laminations,” IEEE Trans. Magn., vol. 9, no. 4, pp. 651-654, Dec. 1973.
[8]W. Brix, K. A. Hempel, and F. J. Schulte, “Improved method for the rotational magnetization process in electrical steel sheets,” IEEE Trans. Magn., vol. 20, no. 5, pp.1708-1710, Sept. 1984.
[9]T. Nakata, Y. Ishihara, M. Nakaji, and T. Todaka, “Comparison between the H-coil method and the magnetizing current method for the single sheet tester,” J. Magn. and Magn. Mater., vol. 215, pp. 607-610, 2000.
[10]A. Besse, G. Boero, M. Demierre, V. Pott, and R. Popovic, “Detection of a single magnetic microbead using a miniaturized silicon Hall sensor,” Appl. Phys. Lett., vol. 80, no. 22, pp. 3-5, June 2002.
[11]G. Crevecoeur, L. Dupre, L. Vandenvossche, and R. Van de Walle, “Local identification of magnetic hysteresis properties near cutting edges of electrical steel sheets,” IEEE Trans. Magn., vol. 44, no. 6, pp. 1010-1013, June 2008.
[12]M. Brokate, “Some mathematical properties of the Preisach model for hysteresis,” IEEE Trans. Magn., vol. 25, no. 4, pp. 2922-2924, July 1989.
[13]D. L. Atherton, J. R. Beattie, “A mean field Stoner-Wohlfarth hys- teresis model,” IEEE Trans. Magn., vol. 26, no. 6, pp. 3059-3063, Nov. 1990.
[14]A. J. Bergqvist, “A simple vector generalization of the Jiles-Atherton model of hysteresis,” IEEE Trans. Magn., vol. 32, no. 5, pp. 4213 -4215, Nov. 1996.
[15]D. Makaveev, M. D. Wulf, and J. Melkebeek, “Field homogeneity in a two-phase rotational single sheet tester with square samples,” J. Magn. and Magn. Mater., vol. 196, pp. 937-939, 1999.
[16]A. Hasenzagl, B. Weiser, and H. Pfützner, “Novel 3-phase excited single sheet tester for rotational magnetization,” J. Magn. and Magn. Mater., vol. 160, pp. 180-182, 1996.
[17]M. Jesenik, V. Gorican, M. Trlep, A. Hamler, and B. Stumberger, “Field homogeneity in a two-phase round rotational single sheet tester with one and both side shields,” J. Magn. and Magn. Mater., vol. 254, pp. 247-249, 2003.
[18]W. Brix, K. A. Hempel, and W. Schroeder, “Method for the measure- ment of rotational power loss and related properties in electrical steel sheets,” IEEE Trans. Magn., vol. 18, no. 6, pp. 1469-1471, Nov. 1982.
[19]J. G. Zhu and V. S. Ramsden, “Two dimensional measurement of magnetic field and core loss using a square specimen tester” IEEE Trans. Magn., vol. 29, no. 6, pp. 2995-2997, Nov. 1993.
[20]H. Pfützner, “The needle method for induction tests:sources of error,” IEEE Trans. Magn., vol. 40, no. 3, pp. 1610-1616, May 2004.
[21]G. Loisos and A. J. Moses, “Critical evaluation and limitations of localized flux density measurements in electrical steels,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2755-2757, July 2001.
[22]D. Miljavec and B. Zidaric, “Introducing a domain flexing function in the Jiles-Atherton hysteresis model,” J. Magn. and Magn. Mater., vol. 320, pp. 763-768, 2008.
[23]J. V. Leite, N. Sadowski, P. kuo-Peng, N. J. Batistela, J. P. A. Bastos, and A. A. de Espindola, “Inverse Jiles-Atherton vector hysteresis model,” IEEE Trans. Magn., vol. 40, no. 4, pp. 1769-1775, July 2004.
[24]D. C. Jiles, “Theory of ferromagnetic hysteresis,” J. Magn. and Magn. Mater., vol. 61, pp. 48-60, 1986.
[25]N. Sadowski, N. J. Batistela, J. P. A. Bastos, and M. Lajoie-Mazenc, “An Inverse Jiles-Atherton Model to take into account hysteresis in time-stepping finite-element calculations,” IEEE Trans. Magn., vol. 38, no. 2, pp. 797-800, Mar. 2002.
[26]J. V. Leite, N. Sadowski, P. Kuo-Peng, N. J. Batistela, and J. P. A. Bastos, “The Inverse Jiles-Atherton Model parameters identification,” IEEE Trans. Magn., vol. 39, no. 3, pp. 1397-1400, Mar. 2003.
[27]H. Pfützner, “Rotational magnetization and rotational losses of grain oriented silicon steel sheets-fundamental aspects and theory,” IEEE Trans. Magn., vol. 30, no. 5, pp. 2802-2807, Sept. 1994.
[28]K. Senda, M. Ishida, K. Sato, M. Komatsubara, and T. Yamaguchi, “Localized magnetic properties in grain-oriented silicon steel measured by stylus probe method,” Electr. Eng. Japan, vol. 117-A, no. 9, pp. 942-949, Sept. 1997.
[29]COMSOL AB, COMSOL Multiphysics User’s Guide, Version 3.5a, Stockholm, Sweden, 2008.
[30]K. Koibuchi, T. Ohno, and K. Sawa, “A basic study for optimal design of switched reluctance motor by finite element method,” IEEE Trans. Magn., vol. 33, no. 2, pp. 2077-2080, Mar. 1994.
[31]P. Zhou, D. Lin, W. N. Fu, B. Ionescu, and Z. J. Cendes, “A general cosimulation approach for coupled field-circuit problems,” IEEE Trans. Magn., vol. 42, no. 4, pp. 1051-1054, Apr. 1994.
[32]A. Deihimi, S. Farhangi, and G. Henneberger, “A general nonlinear model of switched reluctance motor with mutual coupling and multiphase excitation,” Electr. Eng., vol. 84, pp. 143-158, 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 沈再木、黃達雄、杜柏勳、沈榮壽、黃光亮. 1993. 夜來香切花品系之選育. 中國園藝 39:23-29.
2. 沈再木、沈榮壽、黃光亮. 1991. 夜來香花芽發育及花期調節之研究. 中國園藝37:10-20.
3. 黃達雄、沈再木. 1982. 重瓣夜來香開花及種球發育之初步觀察. 嘉義農專園藝學報 12:15-22.
4. 黃光亮. 1988. 夜來香組織培養繁殖之研究. 嘉義農專學報 17: 59-66.
5. 陳威臣、蕭翌柱、楊淑如、葉茂生、蔡新聲. 2001. 瓶內馴化處理對組織培養苗生長之影響. 科學農業 49: 276-280.
6. 沈再木、黃光亮、張平順. 2001. 疉氮化鈉對夜來香品系誘變效應之初報. 中國園藝47: 129-135.
7. 沈再木、黃達雄、黃光亮、沈榮壽、杜柏勳. 1997. 新花色夜來香品系之選育. 中國園藝 43:358-367.
8. 沈再木. 1983. 夜來香花粉貯藏及不親和性之研究. 中國園藝 29: 231-239.
9. 朱建鏞、吳安娜. 1997. 蔗糖對玫瑰花組織培養培殖體光自營生長的影響. 中國園藝 43:149-158.
10. [5]呂宗興, ”電子構裝技術的發展歷程,” 工業材料115期, p49(1996).
11. 褚昱均、葉德銘. 2006. 馴化光度對白馬粗肋草組織培養苗出瓶後葉片光合作用與植株生長之影響. 臺灣園藝52: 199-208.
12. 張盛添、王才義. 1999. 孤挺花組織培養之研究. 桃園區農業改良場研究報告 37: 29-37.
13. 張盛添、王才義. 1998. 孤挺花雙鱗片繁殖法之研究. 桃園區農業改良場研究報告 35: 33-40.
14. 陳威臣、蕭翌柱、賴建洲、蔡新聲. 1998. 培養基組成與培養容器覆蓋物對康乃馨組織培養苗玻璃質化與發根的影響. 中華農業研究 47: 364-376.
15. 林禎祥、沈再木. 2005. 夜來香組織培養苗發根之研究. 中國園藝. 51:51-62.
 
系統版面圖檔 系統版面圖檔