[1] I. Kato, H. Tsuiki, “The Hydraulically Powered Biped Walking Machine with a High Carrying Capacity,” Proc. of the 4th Int. Symposium on External Control of Human Extremities, Dubrovnik, pp.410-421, 1972.
[2] T. McGeer, “Passive Walking with Knees,” Proc. of ICRA, vol. 3, pp. 1640-1645, May 1990.
[3] K. Hirai, M. Hirose, Y. Haikawa, T. Takenaka, “The Development of Honda Humanoid Robot,” Proc. of ICRA’98, vol. 2, pp. 1321-1326, 1998.
[4] H. Lim, S. A. Setiawan, A. Takanishi, “Biped Walking Using Stabilization and Compliance Control,” Proc. of Humanoids, pp. 211-217, 2001.
[5] M. Inadba, A. Inoue, “A Fast Generation Method of a Dynamically Stable Humanoid Robot Trajectory with Enhanced ZMP Constraint,” Proc. of IEEE-RAS Humanoids, 2000.
[6] Y. Nakajima, A. Yonemura, A. Kawamira, “Experimental Approach for the Fast Walking Robot,” Proc. of IASTED-RA, 2000.
[7] Y. Kuroki et al., “A Small Biped Entertainment Robot,” Proc. of Humanoids, pp. 181-186, 2001.
[8] M. Vukobratovi′c, B. Borovac, “Zero-Moment Point-Thirty Five Years of Its Life,” International Journal of Humanoid Robotics, vol. 1, no. 1, pp. 157–173, 2004.
[9] K. Yokoi, F. Kanehiro, K. Kaneko, K. Fujiwara, S. Kajita, H. Hirukawa, “A Honda Humanoid Robot Controlled by AIST Software,” Proc. of Humanoids, pp. 259-264, 2001.
[10] Asimo, “The World''s Most Advanced Humanoid Robot,” http://asimo.honda.com/, 2010
[11] K. Nishiwaki, Y. Murakami, T. Sugihara, S. Kagami, M. Inaba, H. Inoue, “Extension of Walking and Whole-Body Action Capability with Toe Joints,” Proc. of the 6th Robotics Symposia. RSJ, JSME and SICE, pp. 113–118, 2001.
[12] T. Takahashi, A. Kawamura, “Posture Control for Biped Robot Walk with Foot Toe and Sole,” Proc. of IECON, 2001.
[13] J. Pratt, P. Dilworth, G. Pratt, “Virtual Model Control of a Bipedal Walking Robot,” Proc. of ICRA ''97, Albuquerque, NM, 1997.
[14] J. Pratt, “Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal Walking Robots,” Ph.D. Thesis, Computer Science Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2000.
[15] J. Pratt, “Virtual Model Control of a Biped Walking Robot,” M. Eng. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1995.
[16] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. R. Westervelt, C. Canudas-de-Wit, J. W. Grizzle, “RABBIT: A Testbed for Advanced Control Theory,” IEEE Control Systems Magazine, vol. 23, no. 5, pp. 57-79, 2003.
[17] F. Ozguner, S. J. Tsai, R. B. McGhee, “An Approach to the Use of Terrain-Preview Information in Rough Terrain Locomotion by a Hexapod Walking Machine,” International Journal of Robotics Research, vol. 3, no. 2, pp. 134-146, 1984.
[18] R. A. Brooks, “A Robot that Walks: Emergent Behavior from a Carefully Evolved Network,” Neural Computation, vol. 1, no. 2, pp. 253-262, 1989.
[19] D. Wettergreen, H. Pangels, J. Bares, “Behavior-Based Gait Execution for the Dante II Walking Robot,” IEEE International Conference on Intelligent Robots and Systems, vol. 3, pp. 274-279, 1995.
[20] G. M. Nelson, R. D. Quinn, “Posture Control of a Cockroach-Like Robot,” Proc. of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, vol. 1, pp. 157-162, 1998.
[21] G. M. Nelson, R. D. Quinn, “Posture Control of a Cockroach-Like Robot,” IEEE Control Systems Magazine, vol. 19, no. 2, pp. 9-14, 1999.
[22] K. Berns, S. Cordes, W. Ilg, “Adaptive, Neural Control Architecture for the Walking Machine Lauron,” Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Munich, Germany, pp. 1172-1177, 1994.
[23] S. Cordes, K. Berns, I. Leppanen, “Sensor Components of the Six-Legged Walking Machine Lauron II,” Proc. of the International Conference on Advanced Robotics, 1997.
[24] B. Gamann, K.-U. Scholl, K. Berns, “Locomotion of Lauron III in Rough Terrain,” Proc. of the International Conference on Advanced Mechatronics, 2001.
[25] F. Delcomyn, M. E. Nelson, “Architectures for a Biomimetic Hexapod Robot,” Robotics and Autonomous Systems, vol. 30, no. 1, pp. 5-15, 2000.
[26] J. Ayers, J. Witting, N. McGruer, C. Olcott, D. Massa, “Lobster Robots,” Proc. of the International Symposium on Aqua Biomechanisms, 2000.
[27] J. Ayers, J. Witting, C. Wilbur, P. Zavracky, N. McGruer, D. Massa, “Biomimietic Robots for Shallow Water Mine Counter Measurements,” Proc. of the Autonomous Vehicles in Mine Countermeasures, 2000.
[28] J. A. Smith, I. Poulakakis, “Rotary Gallop in the Untethered Quadrupedal Robot Scout II,” Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, vol. 3, pp. 2556-2561, 2004.
[29] Lynxmotion, “Lynxmotion Robot Kits, ” http://www.lynxmotion.com/, 2010
[30] J. A. Cobano, J. Estremera, P. Gonzalez de Santos, “Accurate Tracking of Legged Robots on Natural Terrain,” Autonomous Robots, vol. 28, no. 2, pp. 231–244, 2010.
[31] V. G. Loca, S. G. Roha, I. M. Kooa, D. T. Trana, H. M. Kima, H. Moona, H. R. Choi, “Sensing and Gait Planning of Quadruped Walking and Climbing Robot for Traversing in Complex Environment,” Robotics and Autonomous Systems, vol. 58, no. 5, pp. 666-675, 2010.
[32] D. M. Wilson, “Insect Walking,” Annual Review Entomology, vol. 11, pp. 103-121, 1966.
[33] D. M. Wilson, “Stepping Patterns in Tarantula Spiders,” Journal of Experimental Biology, vol. 47, no. 1, pp. 133-151, 1967.
[34] C. Ferrell, “A Comparison of Three Insect-Inspired Locomotion Controllers,” Robotics and Autonomous Systems, vol. 16, no. 2, pp. 135-159, 1995.
[35] S. M. Song, K. J. Waldron, “An Analytical Approach for Gait Study and Its Applications on Wave Gaits,” The International Journal of Robotics Research, vol. 6, no. 2, pp. 60-71, 1987.
[36] R. B. McGhee, G. I. Iswandhi, “Adaptive Locomotion of a Multilegged Robot Over Rough Terrain,” IEEE Transactions on Tystems, Man and Cybernetics. Part B: Cybernetics, vol. 9, pp. 176-182, 1979.
[37] M. R. Patterson, J. J. Reidy, B. J. Brownstein, “Guidance and Actuation Techniques for an Adaptively Controlled Vehicle,” Final Tech. Rept. Columbus, Ohio: Battelle Columbus Laboratories, 1983.
[38] F. Ozguner, S. J. Tsai, R. B. McGhee, “An Approach to the Use of Terrain-Preview Information by a Hexapod Walking Machine,” The International Journal of Robotics Research, vol. 3, no. 2, pp. 134-146, 1984.
[39] K. J. Waldron et al., “Mechanical and Geometric Design of the Adaptive Suspension Vehicle,” Proc. Symp. Theory and Practice of Robots and Manipulators, 1984.
[40] S. M. Song, “Kinematic Optimal Design of a Six-Legged Walking Machine,” Ph. D. thesis, The Ohio State University, Columbus, Ohio, 1984.
[41] A. P. Bessonov, N. V. Umnov, “The Analysis of Gaits in Six-Legged Vehicles According to Their Static Stability,” Proc. Symp. Theory and Practice of Robots and Manipulators, Udine, Italy, 1973.
[42] R. B. McGhee, A. A. Frank, “On the Stability Properties of Quadruped Creeping Gaits,” Mathematical Biosciences, vol. 3, pp. 331-351, 1968.
[43] H. Cruse et al., “Walknet— A Biologically Inspired Network to Control Six-Legged Walking,” Neural Networks, vol. 11, pp. 1435–1447, 1998.
[44] R. A. Brooks, “A Robust Layered Control System for a Mobile Robot,” IEEE Journal of Robotics and Automation, vol. 2,no. 1, pp. 14-23, 1986.
[45] R. A. Brooks, “The Behavior Language: User’s Guide,” MIT A.I. Memo 1227, 1990.
[46] F. Pfeiffer, H. J. Weidemann, P. Danowski, “Dynamics of the Walking Stick Insect,” IEEE Control Systems Magazine, pp. 9-13, 1991.
[47] M. A. Lewis, A. H. Fagg, G. Bekey, “Genetic Algorithms for Gait Synthesis in a Hexapod Robot,” Recent Trends in Mobile Robots, pp. 317-331, 1994.
[48] J. M. Yang, J. H. Kim, “A Fault Tolerant Gait for a Hexapod Robot over Uneven Terrain,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 30, pp. 172–180, 2000.
[49] E. Muybridge, “Animals in Motion,” New Dover Edition, Dover Publications, Inc., New York, 1957.
[50] M. Y. Zarrugh, C. W. Radcliffe, “Computer Generation of Human Gait Kinematics,” Journal of Biomechanics, vol. 12, pp. 99–111, 1979.
[51] A. A. Grishin, A. M. Formal''sky, A. V. Lensky, S. V. Zhitomirsky, “Dynamic Walking of a Vehicle With Two Telescopic Legs Controlled by Two Drives,” The International Journal of Robotics Research, vol. 13, no. 2, 1984.
[52] P. H. Channon, S. H. Hopkins, D.T. Pham, “Simulation and Optimization of Gait for a Bipedal Robot,” Mathematical and Computer Modelling, vol. 14, pp. 463-467, 1990.
[53] C. T. Chi, C. L. Shih, “The Walking Trajectory Planning and Gait Control of Biped Robot,” The Applied Simulation and Modeling, Canada, Banff, July 2000.
[54] D. Ito, T. Murakami and K. Ohnishi, “An Approach to Generation of Smooth Walking Pattern for Biped Robot,” 7th International Workshop on Advanced Motion Control, pp.98 -103, Jul. 2002.
[55] Q. Huang, Y. Nakamura, T. Inamura, “Humanoids Walk with Feed Forward Dynamic Pattern and Feedback Sensory Reflection,” Proc. of the IEEE International Conference on Robotics and Automation, pp. 4220–4225, 2001.
[56] J. Suzuki, D. Ito, T. Kageyama, M. Morisawa, K. Ohnishi, “A Decentralized Real-Time Control for Biped Robot,” 7th International Workshop on Advanced Motion Control, pp. 69-73, 2002.
[57] F.J. Rubio, F.J. Valero, J.L. Suņer, V. Mata, “Simultaneous Algorithm to Solve the Trajectory Planning Problem,” Mechanism and Machine Theory, vol. 44, no. 10, pp. 1910-1922, Oct. 2009.
[58] C. Meifen, A. Kawamura, “Generation of Humanoid Biped Walking Pattern Using Neural Oscillatory Network,” IEEE/ASME International Conference on advanced Intelligent Mechatronics ’97, pp. 81, 1997.
[59] J. Shan, C. Junshi, C. Jiapin, “Design of Central Pattern Generator for Humanoid Robot Walking Based on Multi-Objective GA,” Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1930–1935, 2000.
[60] L. Tian, C. Collins, “An Effective Robot Trajectory Planning Method Using a Genetic Algorithm,” Mechatronics, vol. 14, no. 5, pp. 455-470, Jun. 2004.
[61] J. A. Maria da Graça Marcos, T. Machado, T-P Azevedo-Perdicoúlis, “ Trajectory Planning of Redundant Manipulators Using Genetic Algorithms,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 7, pp.2858 - 2869, 2009.
[62] B. S. choi, S. M. Song, “Fully Automated Obstacle-Crossing Gaits for Walking Machines,” Proc. of 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA, vol.2, pp. 802 - 807, Apr 1988.
[63] 蔡明祥,六腳機械載具之設計與動態分析,國立中央大學機械工程研究所碩士論文,2003。
[64] 李青峰,四足步行機器人之設計與動態分析,國立中央大學機械工程研究所碩士論文,2004。[65] K. Tsujita, K. Tsuchiya, A. Onat, “Adaptive gait pattern control of a quadruped locomotion robot,” in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems 2001, Maui, HI, vol.4, pp. 2318–2325, Aug. 2001.
[66] C. Shih, “Gait Synthesis for a Biped Robot,” Robotica, vol. 15, pp. 599–607, Jan. 1997.
[67] C. Shih, “Ascending and Descending Stairs for a Biped Robot,” IEEE Transactions on Systems, Man and Cybernetics. Part A: Systems and Humans, vol. 29, no. 3, pp. 255– 268, May 1999.
[68] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, K. Tanie, “Planning Walking Patterns for a Biped Robot,” IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp. 280- 289, Jun. 2001.
[69] Q. Huang, Y. Nakamura, “Sensory Reflex Control for Humanoid Walking,” IEEE Transactions on Robotics, vol. 21, no. 5, pp. 977– 984, Oct. 2005.
[70] Y. S. Zhou, Y. J. Pei, J. Yu, Z. L. Chi, “The Planning Walking Trajectory of Biped Humanoid Robot,” Journal of Yunnan University, vol. 28, no. 1, pp. 20–26, 2006.
[71] A. A. Thant, K. K. Aye, “Application of Cubic Spline Interpolation to Walking Patterns of Biped Robot,” World Academy of Science, Engineering and Technology, vol. 50, pp. 27- 34, 2009.
[72] P. N. Mousavi, C. Nataraj, A. Bagheri, M. A. Entezari, “Mathematical Simulation of Combined Trajectory Paths of a Seven Link Biped Robot,” Applied Mathematical Modelling, vol. 32, no. 7, pp. 1445-1462, Jul. 2008.
[73] A. Gasparetto, V. Zanotto, “A New Method for Smooth Trajectory Planning of Robot Manipulators,” Mechanism and Machine Theory, vol. 42, no. 4, pp. 455–471, Apr. 2007.
[74] A. Gasparetto, V. Zanotto, “A Technique for Time-Jerk Optimal Planning of Robot Trajectories,” Robotics and Computer-Integrated Manufacturing, vol. 24, no. 3, pp. 415–426, Jun. 2008.
[75] A. Gasparetto, V. Zanotto, “Optimal Trajectory Planning for Industrial Robots,” Advances in Engineering Software, vol. 41, pp. 548–556, Apr. 2010.
[76] J. Z. Kolter, A. Y. Ng, “Task-Space Trajectories via Cubic Spline Optimization,” IEEE International Conference on Robotics & Automation (ICRA), pp. 1675 – 1682, May 2009.
[77] M. Hildebrand, “Symmetrical Gaits of Horse,” Science, vol. 150, no. 3697, pp. 701-708, 1965.
[78] D. E. Okhotsimski, A. K. Platonov, “Control Algorithm for Walking and Climbing Over Obstacles,” Proc. 3rd Int. Joint Conf. Artificial Intel, Stanford, Calif., 1973.
[79] 蔡崇宣,仿生多足機器人足部故障之步態研究,國立中山大學機械與機電工程學系碩士論文,2008。[80] S. S. Sun, “A Theoretical Study of Gaits for Legged Locomotion System,” Ph.D. dissertation, The Ohio State University, Columbus, OH, 1974.
[81] D. Butler, “The Principles of Horseshoeing II,” Revised and Enlarged Edition, Doug Butler Publisher, Maryville, Missouri, 1985.
[82] E. H. Edwards, “The Ultimate Horse Book,” Dorling Kindersley, Inc., New York, 1991.
[83] Visual Dictionary Online, “Animal Kingdom,” www.visualdictionaryonline.com 2010.
[84] R. M. Alexander, “Exploring Biomechanics: Animals in Motion,” Scientific American Library, New York, 1992.
[85] T. Seddon, “Animal Movement”, Facts on File, Inc., New York, 1988.
[86] S. M. Song, B. S. Choi, “A Study on Continuous Follow-The-Leader (FTL) Gaits: an Effective Walking Algorithm Over Rough Terrain”, Mathematical Biosciences, vol. 97, no. 2, pp. 199-233, Mar. 1989.
[87] S. M. Song, B. S. Choi, “The Optimally Stable Ranges of 2n-Legged Wave Gaits,” IEEE Transactions on Systems, Man and Cybernetics, vol. 20, no. 4, pp. 888-906, Aug. 1990.
[88] C. D. Zhang, S. M. Song, “A Study of the Stability of Generalized Wave Gaits,” Mathematical Biosciences, vol. 115, no. 1, pp. 1-32, May. 1993.
[89] Y. G. Chen, “On the Design of a Quadruped Walking Machine with A Single Actuator,” M.S. thesis, National Cheng Kung University, Taiwan, R.O.C., 2003.
[90] J. Xiao, S. M. Song, “A Search for Gaits that are More Stable than Wave Gait,” International Symposium on Biometrics and Security Technologies (ISBAST 2008), Islamabad, pp. 1 – 6, Apr. 2008.
[91] C. N. Neklutin, “Vibration Analysis of Cams,” Machine Design, vol. 26, pp. 190-198, 1954.
[92] C. Ferrell, “Comparison of Three Insect-Inspired Locomotion Controllers,” Robotics and Autonomous Systems, vol.16, pp. 135–159, 1995.
[93] J. Perry, J. Burnfield, “Gait Analysis: Normal and Pathological Function,” Slack Incorporated, 2010.
[94] R. L. Norton, “Design of Machinery: an Introduction to the Synthesis and Analysis of Mechanisms and Machines,” McGraw-Hill, 2008.
[95] 許永和,ZigBee無線感測網路設計與應用實務,台灣優奎士出版社,2009。
[96] Freescale Semiconductor, “MMA7260QT Product Summary Page,” http://www.freescale.com/, 2010.
[97] D. A. Winter, “Foot Trajectory in Human Gait: A Precise and Multifactorial Motor Control Task,” Physical Therapy, vol.72, no. 1, pp. 45–53, 1992.