跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 01:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王馨平
研究生(外文):Hsin-ping Wang
論文名稱:步行機器人步態模型及足端軌跡規劃
論文名稱(外文):Gait modeling and Trajectory planning for legged robots
指導教授:何應勤
指導教授(外文):Innchyn Her
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:171
中文關鍵詞:步態數學模型軌跡規劃步態規劃四足六足步態
外文關鍵詞:Gait mathematical modelGait planningTrajectory planning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:861
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
步態研究在步行機器人研究方面扮有相當重要的角色,因為必須先決定機器人步行的模式與規則,藉由這些步態規劃才能做更進一步的設計、控制、分析或探討。本研究探討的對象為六足與四足步行機器人,建立一數學模型,利用此數學模型可完善地描述自然步態以及人工步態,具有系統地規劃及表示步態。
  除了規劃步態方式外,本文另一研究重點為規劃機器人行走之姿態,在此提出一新的足部軌跡規劃概念,並可建立足部運動之S-V-A-J模型,用以描述及探討足部的運動情形。本文之目標為使機器人能夠達到等速直行的目的,應用設計凸輪之「段落函數(piecewise function)」方法,如此便可使機器人行走過程中等速度前進且維持加速度之連續性。
Gait study plays an important role in the walking robot, because it is the foundation of walking robots. The robot must first determine the walking pattern and rules, thus we can evolve further design, control, analysis or study. This research focus on hexapod and quadruped walking robots, and establishes a mathematical model which can fully describe natural and artificial gaits, and systematically plan and express them.
Another point of this research is planning walk trajectory of robot. Here we purpose a new concept of foot trajectory planning, and establish S-V-A-J models for feet motion. We try to make robots move forward with constant velocity, as a goal, by using piecewise function of cam design theory. Therefore robot can walk with constant velocity and maintain the continuity of acceleration.
目錄 Ⅰ
圖目錄 Ⅱ
表目錄 Ⅴ
摘要 0
ABSTRACT 1
第一章 緒論 2
1.1 足式機器人發展 5
1.2 機器人步態研究之發展 11
1.3 機器人姿態研究之發展 12
1.4 研究動機與目的 15
1.5 本文架構 16
第二章 步態的基礎理論 17
2.1 步態之表示法 17
2.2 步態之種類 19
2.3 六足與四足之步態理論 20
第三章 自然步態之規劃與數學模型 25
3.1 步態之基本參數定義 25
3.2 步態之數學模型 26
3.3 六足自然步態規劃與數學模型 27
3.4 四足自然步態規劃與數學模型 37
3.5 小結 45
第四章 人工步態之規劃與數學模型 46
4.1 六足自然步態改為人工步態 46
4.2 六足(2-2-2)人工步態之規劃與模型 86
4.3 四足(2-2)人工步態之規劃與模型 97
4.4 小結 102
第五章 步姿規劃與模型 104
5.1 加速度實驗 104
5.2 直行機器人步姿規劃之基本概念 113
5.3 直行機器人x方向之步姿規劃與模型 115
5.4 直行機器人z方向之步姿規劃與模型 124
5.5 軌跡規劃之範例 141
5.6 步態規劃結合步姿規劃 144
5.7 小結 147
第六章 結果與討論 151
參考文獻 155
[1] I. Kato, H. Tsuiki, “The Hydraulically Powered Biped Walking Machine with a High Carrying Capacity,” Proc. of the 4th Int. Symposium on External Control of Human Extremities, Dubrovnik, pp.410-421, 1972.
[2] T. McGeer, “Passive Walking with Knees,” Proc. of ICRA, vol. 3, pp. 1640-1645, May 1990.
[3] K. Hirai, M. Hirose, Y. Haikawa, T. Takenaka, “The Development of Honda Humanoid Robot,” Proc. of ICRA’98, vol. 2, pp. 1321-1326, 1998.
[4] H. Lim, S. A. Setiawan, A. Takanishi, “Biped Walking Using Stabilization and Compliance Control,” Proc. of Humanoids, pp. 211-217, 2001.
[5] M. Inadba, A. Inoue, “A Fast Generation Method of a Dynamically Stable Humanoid Robot Trajectory with Enhanced ZMP Constraint,” Proc. of IEEE-RAS Humanoids, 2000.
[6] Y. Nakajima, A. Yonemura, A. Kawamira, “Experimental Approach for the Fast Walking Robot,” Proc. of IASTED-RA, 2000.
[7] Y. Kuroki et al., “A Small Biped Entertainment Robot,” Proc. of Humanoids, pp. 181-186, 2001.
[8] M. Vukobratovi′c, B. Borovac, “Zero-Moment Point-Thirty Five Years of Its Life,” International Journal of Humanoid Robotics, vol. 1, no. 1, pp. 157–173, 2004.
[9] K. Yokoi, F. Kanehiro, K. Kaneko, K. Fujiwara, S. Kajita, H. Hirukawa, “A Honda Humanoid Robot Controlled by AIST Software,” Proc. of Humanoids, pp. 259-264, 2001.
[10] Asimo, “The World''s Most Advanced Humanoid Robot,” http://asimo.honda.com/, 2010
[11] K. Nishiwaki, Y. Murakami, T. Sugihara, S. Kagami, M. Inaba, H. Inoue, “Extension of Walking and Whole-Body Action Capability with Toe Joints,” Proc. of the 6th Robotics Symposia. RSJ, JSME and SICE, pp. 113–118, 2001.
[12] T. Takahashi, A. Kawamura, “Posture Control for Biped Robot Walk with Foot Toe and Sole,” Proc. of IECON, 2001.
[13] J. Pratt, P. Dilworth, G. Pratt, “Virtual Model Control of a Bipedal Walking Robot,” Proc. of ICRA ''97, Albuquerque, NM, 1997.
[14] J. Pratt, “Exploiting Inherent Robustness and Natural Dynamics in the Control of Bipedal Walking Robots,” Ph.D. Thesis, Computer Science Department, Massachusetts Institute of Technology, Cambridge, Massachusetts, 2000.
[15] J. Pratt, “Virtual Model Control of a Biped Walking Robot,” M. Eng. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, 1995.
[16] C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. R. Westervelt, C. Canudas-de-Wit, J. W. Grizzle, “RABBIT: A Testbed for Advanced Control Theory,” IEEE Control Systems Magazine, vol. 23, no. 5, pp. 57-79, 2003.
[17] F. Ozguner, S. J. Tsai, R. B. McGhee, “An Approach to the Use of Terrain-Preview Information in Rough Terrain Locomotion by a Hexapod Walking Machine,” International Journal of Robotics Research, vol. 3, no. 2, pp. 134-146, 1984.
[18] R. A. Brooks, “A Robot that Walks: Emergent Behavior from a Carefully Evolved Network,” Neural Computation, vol. 1, no. 2, pp. 253-262, 1989.
[19] D. Wettergreen, H. Pangels, J. Bares, “Behavior-Based Gait Execution for the Dante II Walking Robot,” IEEE International Conference on Intelligent Robots and Systems, vol. 3, pp. 274-279, 1995.
[20] G. M. Nelson, R. D. Quinn, “Posture Control of a Cockroach-Like Robot,” Proc. of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, vol. 1, pp. 157-162, 1998.
[21] G. M. Nelson, R. D. Quinn, “Posture Control of a Cockroach-Like Robot,” IEEE Control Systems Magazine, vol. 19, no. 2, pp. 9-14, 1999.
[22] K. Berns, S. Cordes, W. Ilg, “Adaptive, Neural Control Architecture for the Walking Machine Lauron,” Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Munich, Germany, pp. 1172-1177, 1994.
[23] S. Cordes, K. Berns, I. Leppanen, “Sensor Components of the Six-Legged Walking Machine Lauron II,” Proc. of the International Conference on Advanced Robotics, 1997.
[24] B. Gamann, K.-U. Scholl, K. Berns, “Locomotion of Lauron III in Rough Terrain,” Proc. of the International Conference on Advanced Mechatronics, 2001.
[25] F. Delcomyn, M. E. Nelson, “Architectures for a Biomimetic Hexapod Robot,” Robotics and Autonomous Systems, vol. 30, no. 1, pp. 5-15, 2000.
[26] J. Ayers, J. Witting, N. McGruer, C. Olcott, D. Massa, “Lobster Robots,” Proc. of the International Symposium on Aqua Biomechanisms, 2000.
[27] J. Ayers, J. Witting, C. Wilbur, P. Zavracky, N. McGruer, D. Massa, “Biomimietic Robots for Shallow Water Mine Counter Measurements,” Proc. of the Autonomous Vehicles in Mine Countermeasures, 2000.
[28] J. A. Smith, I. Poulakakis, “Rotary Gallop in the Untethered Quadrupedal Robot Scout II,” Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Sendai, Japan, vol. 3, pp. 2556-2561, 2004.
[29] Lynxmotion, “Lynxmotion Robot Kits, ” http://www.lynxmotion.com/, 2010
[30] J. A. Cobano, J. Estremera, P. Gonzalez de Santos, “Accurate Tracking of Legged Robots on Natural Terrain,” Autonomous Robots, vol. 28, no. 2, pp. 231–244, 2010.
[31] V. G. Loca, S. G. Roha, I. M. Kooa, D. T. Trana, H. M. Kima, H. Moona, H. R. Choi, “Sensing and Gait Planning of Quadruped Walking and Climbing Robot for Traversing in Complex Environment,” Robotics and Autonomous Systems, vol. 58, no. 5, pp. 666-675, 2010.
[32] D. M. Wilson, “Insect Walking,” Annual Review Entomology, vol. 11, pp. 103-121, 1966.
[33] D. M. Wilson, “Stepping Patterns in Tarantula Spiders,” Journal of Experimental Biology, vol. 47, no. 1, pp. 133-151, 1967.
[34] C. Ferrell, “A Comparison of Three Insect-Inspired Locomotion Controllers,” Robotics and Autonomous Systems, vol. 16, no. 2, pp. 135-159, 1995.
[35] S. M. Song, K. J. Waldron, “An Analytical Approach for Gait Study and Its Applications on Wave Gaits,” The International Journal of Robotics Research, vol. 6, no. 2, pp. 60-71, 1987.
[36] R. B. McGhee, G. I. Iswandhi, “Adaptive Locomotion of a Multilegged Robot Over Rough Terrain,” IEEE Transactions on Tystems, Man and Cybernetics. Part B: Cybernetics, vol. 9, pp. 176-182, 1979.
[37] M. R. Patterson, J. J. Reidy, B. J. Brownstein, “Guidance and Actuation Techniques for an Adaptively Controlled Vehicle,” Final Tech. Rept. Columbus, Ohio: Battelle Columbus Laboratories, 1983.
[38] F. Ozguner, S. J. Tsai, R. B. McGhee, “An Approach to the Use of Terrain-Preview Information by a Hexapod Walking Machine,” The International Journal of Robotics Research, vol. 3, no. 2, pp. 134-146, 1984.
[39] K. J. Waldron et al., “Mechanical and Geometric Design of the Adaptive Suspension Vehicle,” Proc. Symp. Theory and Practice of Robots and Manipulators, 1984.
[40] S. M. Song, “Kinematic Optimal Design of a Six-Legged Walking Machine,” Ph. D. thesis, The Ohio State University, Columbus, Ohio, 1984.
[41] A. P. Bessonov, N. V. Umnov, “The Analysis of Gaits in Six-Legged Vehicles According to Their Static Stability,” Proc. Symp. Theory and Practice of Robots and Manipulators, Udine, Italy, 1973.
[42] R. B. McGhee, A. A. Frank, “On the Stability Properties of Quadruped Creeping Gaits,” Mathematical Biosciences, vol. 3, pp. 331-351, 1968.
[43] H. Cruse et al., “Walknet— A Biologically Inspired Network to Control Six-Legged Walking,” Neural Networks, vol. 11, pp. 1435–1447, 1998.
[44] R. A. Brooks, “A Robust Layered Control System for a Mobile Robot,” IEEE Journal of Robotics and Automation, vol. 2,no. 1, pp. 14-23, 1986.
[45] R. A. Brooks, “The Behavior Language: User’s Guide,” MIT A.I. Memo 1227, 1990.
[46] F. Pfeiffer, H. J. Weidemann, P. Danowski, “Dynamics of the Walking Stick Insect,” IEEE Control Systems Magazine, pp. 9-13, 1991.
[47] M. A. Lewis, A. H. Fagg, G. Bekey, “Genetic Algorithms for Gait Synthesis in a Hexapod Robot,” Recent Trends in Mobile Robots, pp. 317-331, 1994.
[48] J. M. Yang, J. H. Kim, “A Fault Tolerant Gait for a Hexapod Robot over Uneven Terrain,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 30, pp. 172–180, 2000.
[49] E. Muybridge, “Animals in Motion,” New Dover Edition, Dover Publications, Inc., New York, 1957.
[50] M. Y. Zarrugh, C. W. Radcliffe, “Computer Generation of Human Gait Kinematics,” Journal of Biomechanics, vol. 12, pp. 99–111, 1979.
[51] A. A. Grishin, A. M. Formal''sky, A. V. Lensky, S. V. Zhitomirsky, “Dynamic Walking of a Vehicle With Two Telescopic Legs Controlled by Two Drives,” The International Journal of Robotics Research, vol. 13, no. 2, 1984.
[52] P. H. Channon, S. H. Hopkins, D.T. Pham, “Simulation and Optimization of Gait for a Bipedal Robot,” Mathematical and Computer Modelling, vol. 14, pp. 463-467, 1990.
[53] C. T. Chi, C. L. Shih, “The Walking Trajectory Planning and Gait Control of Biped Robot,” The Applied Simulation and Modeling, Canada, Banff, July 2000.
[54] D. Ito, T. Murakami and K. Ohnishi, “An Approach to Generation of Smooth Walking Pattern for Biped Robot,” 7th International Workshop on Advanced Motion Control, pp.98 -103, Jul. 2002.
[55] Q. Huang, Y. Nakamura, T. Inamura, “Humanoids Walk with Feed Forward Dynamic Pattern and Feedback Sensory Reflection,” Proc. of the IEEE International Conference on Robotics and Automation, pp. 4220–4225, 2001.
[56] J. Suzuki, D. Ito, T. Kageyama, M. Morisawa, K. Ohnishi, “A Decentralized Real-Time Control for Biped Robot,” 7th International Workshop on Advanced Motion Control, pp. 69-73, 2002.
[57] F.J. Rubio, F.J. Valero, J.L. Suņer, V. Mata, “Simultaneous Algorithm to Solve the Trajectory Planning Problem,” Mechanism and Machine Theory, vol. 44, no. 10, pp. 1910-1922, Oct. 2009.
[58] C. Meifen, A. Kawamura, “Generation of Humanoid Biped Walking Pattern Using Neural Oscillatory Network,” IEEE/ASME International Conference on advanced Intelligent Mechatronics ’97, pp. 81, 1997.
[59] J. Shan, C. Junshi, C. Jiapin, “Design of Central Pattern Generator for Humanoid Robot Walking Based on Multi-Objective GA,” Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1930–1935, 2000.
[60] L. Tian, C. Collins, “An Effective Robot Trajectory Planning Method Using a Genetic Algorithm,” Mechatronics, vol. 14, no. 5, pp. 455-470, Jun. 2004.
[61] J. A. Maria da Graça Marcos, T. Machado, T-P Azevedo-Perdicoúlis, “ Trajectory Planning of Redundant Manipulators Using Genetic Algorithms,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, no. 7, pp.2858 - 2869, 2009.
[62] B. S. choi, S. M. Song, “Fully Automated Obstacle-Crossing Gaits for Walking Machines,” Proc. of 1988 IEEE International Conference on Robotics and Automation, Philadelphia, PA, vol.2, pp. 802 - 807, Apr 1988.
[63] 蔡明祥,六腳機械載具之設計與動態分析,國立中央大學機械工程研究所碩士論文,2003。
[64] 李青峰,四足步行機器人之設計與動態分析,國立中央大學機械工程研究所碩士論文,2004。
[65] K. Tsujita, K. Tsuchiya, A. Onat, “Adaptive gait pattern control of a quadruped locomotion robot,” in Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems 2001, Maui, HI, vol.4, pp. 2318–2325, Aug. 2001.
[66] C. Shih, “Gait Synthesis for a Biped Robot,” Robotica, vol. 15, pp. 599–607, Jan. 1997.
[67] C. Shih, “Ascending and Descending Stairs for a Biped Robot,” IEEE Transactions on Systems, Man and Cybernetics. Part A: Systems and Humans, vol. 29, no. 3, pp. 255– 268, May 1999.
[68] Q. Huang, K. Yokoi, S. Kajita, K. Kaneko, H. Arai, N. Koyachi, K. Tanie, “Planning Walking Patterns for a Biped Robot,” IEEE Transactions on Robotics and Automation, vol. 17, no. 3, pp. 280- 289, Jun. 2001.
[69] Q. Huang, Y. Nakamura, “Sensory Reflex Control for Humanoid Walking,” IEEE Transactions on Robotics, vol. 21, no. 5, pp. 977– 984, Oct. 2005.
[70] Y. S. Zhou, Y. J. Pei, J. Yu, Z. L. Chi, “The Planning Walking Trajectory of Biped Humanoid Robot,” Journal of Yunnan University, vol. 28, no. 1, pp. 20–26, 2006.
[71] A. A. Thant, K. K. Aye, “Application of Cubic Spline Interpolation to Walking Patterns of Biped Robot,” World Academy of Science, Engineering and Technology, vol. 50, pp. 27- 34, 2009.
[72] P. N. Mousavi, C. Nataraj, A. Bagheri, M. A. Entezari, “Mathematical Simulation of Combined Trajectory Paths of a Seven Link Biped Robot,” Applied Mathematical Modelling, vol. 32, no. 7, pp. 1445-1462, Jul. 2008.
[73] A. Gasparetto, V. Zanotto, “A New Method for Smooth Trajectory Planning of Robot Manipulators,” Mechanism and Machine Theory, vol. 42, no. 4, pp. 455–471, Apr. 2007.
[74] A. Gasparetto, V. Zanotto, “A Technique for Time-Jerk Optimal Planning of Robot Trajectories,” Robotics and Computer-Integrated Manufacturing, vol. 24, no. 3, pp. 415–426, Jun. 2008.
[75] A. Gasparetto, V. Zanotto, “Optimal Trajectory Planning for Industrial Robots,” Advances in Engineering Software, vol. 41, pp. 548–556, Apr. 2010.
[76] J. Z. Kolter, A. Y. Ng, “Task-Space Trajectories via Cubic Spline Optimization,” IEEE International Conference on Robotics & Automation (ICRA), pp. 1675 – 1682, May 2009.
[77] M. Hildebrand, “Symmetrical Gaits of Horse,” Science, vol. 150, no. 3697, pp. 701-708, 1965.
[78] D. E. Okhotsimski, A. K. Platonov, “Control Algorithm for Walking and Climbing Over Obstacles,” Proc. 3rd Int. Joint Conf. Artificial Intel, Stanford, Calif., 1973.
[79] 蔡崇宣,仿生多足機器人足部故障之步態研究,國立中山大學機械與機電工程學系碩士論文,2008。
[80] S. S. Sun, “A Theoretical Study of Gaits for Legged Locomotion System,” Ph.D. dissertation, The Ohio State University, Columbus, OH, 1974.
[81] D. Butler, “The Principles of Horseshoeing II,” Revised and Enlarged Edition, Doug Butler Publisher, Maryville, Missouri, 1985.
[82] E. H. Edwards, “The Ultimate Horse Book,” Dorling Kindersley, Inc., New York, 1991.
[83] Visual Dictionary Online, “Animal Kingdom,” www.visualdictionaryonline.com 2010.
[84] R. M. Alexander, “Exploring Biomechanics: Animals in Motion,” Scientific American Library, New York, 1992.
[85] T. Seddon, “Animal Movement”, Facts on File, Inc., New York, 1988.
[86] S. M. Song, B. S. Choi, “A Study on Continuous Follow-The-Leader (FTL) Gaits: an Effective Walking Algorithm Over Rough Terrain”, Mathematical Biosciences, vol. 97, no. 2, pp. 199-233, Mar. 1989.
[87] S. M. Song, B. S. Choi, “The Optimally Stable Ranges of 2n-Legged Wave Gaits,” IEEE Transactions on Systems, Man and Cybernetics, vol. 20, no. 4, pp. 888-906, Aug. 1990.
[88] C. D. Zhang, S. M. Song, “A Study of the Stability of Generalized Wave Gaits,” Mathematical Biosciences, vol. 115, no. 1, pp. 1-32, May. 1993.
[89] Y. G. Chen, “On the Design of a Quadruped Walking Machine with A Single Actuator,” M.S. thesis, National Cheng Kung University, Taiwan, R.O.C., 2003.
[90] J. Xiao, S. M. Song, “A Search for Gaits that are More Stable than Wave Gait,” International Symposium on Biometrics and Security Technologies (ISBAST 2008), Islamabad, pp. 1 – 6, Apr. 2008.
[91] C. N. Neklutin, “Vibration Analysis of Cams,” Machine Design, vol. 26, pp. 190-198, 1954.
[92] C. Ferrell, “Comparison of Three Insect-Inspired Locomotion Controllers,” Robotics and Autonomous Systems, vol.16, pp. 135–159, 1995.
[93] J. Perry, J. Burnfield, “Gait Analysis: Normal and Pathological Function,” Slack Incorporated, 2010.
[94] R. L. Norton, “Design of Machinery: an Introduction to the Synthesis and Analysis of Mechanisms and Machines,” McGraw-Hill, 2008.
[95] 許永和,ZigBee無線感測網路設計與應用實務,台灣優奎士出版社,2009。
[96] Freescale Semiconductor, “MMA7260QT Product Summary Page,” http://www.freescale.com/, 2010.
[97] D. A. Winter, “Foot Trajectory in Human Gait: A Precise and Multifactorial Motor Control Task,” Physical Therapy, vol.72, no. 1, pp. 45–53, 1992.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top