(3.238.186.43) 您好!臺灣時間:2021/02/28 15:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許兆民
研究生(外文):Chao-ming Hsu
論文名稱:Sn/3.0Ag/0.5Cu錫球潛變與推力實驗之研究
論文名稱(外文):The Study of Creep and Shear Tests for Sn/3.0Ag/0.5Cu Solder Balls
指導教授:光灼華
指導教授(外文):J. H. Kuang
學位類別:博士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:186
中文關鍵詞:潛變方程式破壞韌性推力實驗
外文關鍵詞:Sn/3.0Ag/0.5CuCreepBall Shear TestFailure Toughness
相關次數:
  • 被引用被引用:1
  • 點閱點閱:488
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主旨在建立Sn/3.0Ag/0.5Cu無鉛焊料承受拉、剪負載下,不同工作溫度下之潛變模式。文中分別針對不同焊料設計拉力與剪力潛變實驗,配合120o、135 o、150 o、165℃四個測試溫度下之結果,導引建立Sn/3.0Ag/0.5Cu無鉛焊料潛變方程式。文中為驗證無鉛錫球銲點之強度,亦提出一考慮負載與變形之錫球破壞韌性(Failure Toughness) 定義,並配合高溫老化與熱循環實驗,進行錫球破壞韌性與老化時間及熱循環週期之影響分析。期能進一步探討Sn/3.0Ag/0.5Cu無鉛焊料替代傳統Sn/37Pb銲料,在不同操作條件下之破壞韌性變化。
文中亦針對不同尺寸錫球銲點,在不同工作條件下,進行推力實驗(Ball Shear Test,BST )量測分析其推力與變形之相互關係,同時配合有限元素 (Finite Element Analysis,FEA)模擬分析其應力與有效應變在負載過程中之分布與變化。經由實驗與數值結果比較分析,探討負載過程中,不同條件下錫球焊點之應力、應變分布、變形與破壞韌性間之關係。文中亦比較分析不同材質與尺寸錫球銲點,歷經推力實驗其最終剪切破壞斷面型態與高溫老化及熱循環之相互關係。
拉力與剪力潛變實驗結果顯示,不同負載將導致不同之潛變方程式,拉力與剪力潛變其對應之潛變參數:如應力指數(Stress Exponent)、材料常數(Material Constant)與活化能(Activation Energy)數值並不相同。另無鉛之Sn/3.0Ag/0.5Cu錫球與傳統含鉛之Sn/37Pb共晶錫球之推力試驗結果,顯示兩種焊錫材料之機械性質並不相同,Sn/37Pb錫球銲點之展延性較佳,但強度較低,在負載達到最大值後隨即下降;Sn/3.0Ag/0.5Cu無鉛銲料之負載位移實驗結果,則顯示其負載峰值發生的時間點較晚,相對峰值位移較同尺寸之Sn/37Pb錫球銲點大。依文中所提出之破壞韌性定義,明顯可看出Sn/3.0Ag/0.5Cu無鉛焊料錫球銲點之破壞韌性值遠較同尺寸Sn/37Pb錫球銲點為高。不同尺寸之Sn/3.0Ag/0.5Cu無鉛錫球與Sn/37Pb錫球銲點,均顯示在歷經高溫老化及熱循環實驗後,其推力負載峰值均呈現降低,唯Sn/3.0Ag/0.5Cu錫球銲點之推力峰值降低甚微,但相對應的剪切位移峰值卻增加許多,亦即其銲點之破壞韌性反呈增加趨勢;但對同尺寸之Sn/37Pb錫球銲點而言,測試結果顯示其剪切強度峰值與相對位移量均有遽降的現象,亦即其抗推韌性將明顯喪失。
The creep models of Sn/3.0Ag/0.5Cu solder material under tensile and shear loads are investigated in this study. The creep test results for Sn/3.0Ag/0.5Cu solder material with four operating temperatures, i.e. 120o, 135 o, 150 o and 165 oC are presented. The experimental results reveal that different creep equations are derived for the Sn/3.0Ag/0.5Cu solder material under tensile and shear loadings. The creep parameters, i.e. stress exponent, material constant and activation energy are curve fitted for the tensile and shear loading tests.
The concept of failure toughness of solder ball joints is proposed and studied. The effects of high temperature aging and the thermal cycling loading on the failure toughness of different solder materials and ball sizes have also been explored. The difference between failure toughness values of traditional Sn/37Pb eutectic solder ball joints and the lead free Sn/3.0Ag/0.5Cu solder are compared and discussed. The results simulated from finite element method and experiment measurements under the ball shear test (BST) have been compared and studied. The variation stress, strain distributions and failure toughness during the ball shear testing are studied. The fracture behaviors of different ball joints under the high temperature aging and thermal cycles testing are examined and studied.
The ball shear test results measured for the same size Sn/37Pb and Sn/3.0Ag/0.5Cu solder ball joints reveal different load-displacement variations. The relative ductility results are measured for the joint of Sn/37Pb solder ball. However, a high peak load and larger deformation are measured for Sn/3.0Ag/0.5Cu solder ball joints. Based on the definition of failure toughness proposed in this study, the higher failure toughness values are observed for the same size lead free Sn/3.0Ag/0.5Cu solder joints.
The variation of failure toughness of different ball joints reveals that the high temperature aging and thermal cyclic loading reduce the failure toughness significantly. However, the measured failure toughness values indicate that the Sn/3.0Ag/0.5Cu solder joints have better ductility for the joints undergoing the high temperature aging and the thermal cycle loadings. Based on the measured results, the better reliability for the Sn/3.0Ag/0.5Cu ball joints is expected, due to the aging and cycling load testing.
表目錄………………………………………………………IV
圖目錄………………………………………………………V
中文摘要……………………………………………………XI
Abstract ………………………………………………….XIII
符號說明…………………………………………………XV
第一章 緒論………………………………………………...1
1-1 前言…………………………………………………….1
1-1-1簡介……………………………………………1
1-1-2銲料潛變實驗…………………………………8
1-1-3錫球推力實驗…………………………………9
1-2 研究動機與方法……………………………………13
1-3 文獻回顧……………………………………………15
1-4 組織與章節………………………………………….18
第二章 Sn/3.0Ag/0.5Cu銲錫之高溫潛變實驗………….20
2-1 潛變模式……………………………………………...20
2-2 銲錫之高溫潛變實驗試件與設備……………………… ..24
2-3 潛變實驗結果與……………………………………...30
2-3-1 拉力型銲料潛變實驗………………………30
2-3-2 剪力型銲料潛變實驗………………………39
第三章 錫球抗剪強度之推力實驗與模擬分析………….51
3-1 錫球推力實驗設備與試件…………………………...51
3-1-1 錫球材料與迴銲條件……………………......51
3-1-2實驗設備與推力參數選定…………………..53
3-2推刀移動速度的影響………………………………...57
3-3 錫球抗剪強度推力實驗結果………………………...63
3-3-1 推球破壞能量分析……………………….....67
3-3-2 剪切破壞的行為………………………….....69
3-3-3 錫球破壞面分析………………………….....72
3-4 模擬分析結果………………………………………...75
3-4-1有限元素分析軟體與相關模式參數設定…..77
3-4-2錫球推力實驗過程模擬結果………………..79
第四章 老化與熱循環效應對錫球推力實驗之影響……90
4-1 錫球老化與熱循環實驗……………………………..90
4-1-1實驗試片…………………………………….90
4-1-2實驗項目…………………………………….91
4-2 老化效應對推力結果之影響………………………94
4-3 熱循環效應對推力結果之影響…………………...105
第五章 結論…………………………………………….118
參考文獻………………………………………………..122
附錄A……………………………………………………140
附錄B……………………………………………………145
附錄C…………………………………………………....150
[1] 劉漢誠,1997,球腳格狀陣列封裝技術,鴻海精密工業,台北。
[2] 蕭傳議,2003,“IC載板產業 後年將攀新高峰”,經濟日報2003年12月7日。
[3] IPC Roadmap : A Guide for Assembly of Lead-Free Electronics 4th Draft, June 2000。
[4] J. H. Lau and Y. H. Pao, 1997, Solder Joint Reliability of BGA, CSP, Flip Chip, and Fine Pitch SMT Assemblies, McGrqwHill, NY.
[5] W. K. Choi, J. H. Kim, S. W. Jeong, and H. M. Lee, 2002, “Interfacial Microstructure and Joint Strength of Sn-3.5Ah-X(X=Cu, In, Ni),” Materials Reserch Society, pp.43-51.
[6] JEDEC Solid State Technology Association﹐2000﹐“Test Method for BGA Ball Shear,” JESD22-B117﹐JEDEC Solid State Technology Association, Arlington, VA.
[7] 陳明宏,2003,“添加Sb對Sn-Ag無鉛銲料銲點冶金性質與機械性質之研究”,國立成功大學機械工程學系,博士論文。
[8] J. H. Lau and C. G. Harkins, 1990, “Stiffness of Gull-Wing Leads and Solder Joints for a Plastic Quad Flat Pack,” IEEE, Transactions on Components, Hybrids, and Manufacturing Technology, Vol.13, pp124-130.
[9] J. H. Lau, 1993, Thermal Stress and Strain in Microelectronics Packaging, Van Nostrand Reinhold, New York, USA., pp. 518-528.
[10] J. H. Lau, S. H. Pan, and C. Chang, 2000, “Creep Analysis of Bumped Direct Chip Attach (DCA) on Microvia Build-up Printed Circuit Board with Underfill,” Electronic Material and Packing, pp.127-135.
[11] J. H. Lau, D. Y. R. Chong, 2001, “Flip Chip on Board Solder Joint Reliability Analysis Using 2-D and 3-D FEA Models,” IEEE Transactions on Advanced Packaging, Vol.24, No.4, pp. 499-506.
[12] J. H. Lau, Z. Mei, S. Pang, C. Amsden, J. Rayner, and S. Pan, December 2002, “Creep Analysis and Thermal-Fatigue Life Prediction of the Lead-Free Solder Sealing of a Photonic Switch,” ASME Journal of Electronic Packaging , Vol.124, pp.403-410.
[13] J. H. Lau, S. W. R. Lee, S. H. Pan, and C. Chang , 2002 , “Nonlinear-Time-Dependent Analysis of Micro Via-In-Pad Substrates for Solder Bumped Flip Chip Application,” ASME Journal of Electronic Packaging , Vol.124, pp.205-211.
[14] J. H. Lau, S. W. R. Lee, 2002, “Modeling and Analysis of 96.5Sn/3.5Ag Lead-Free Solder Joints of Wafer Level Chip Scale Package on Buildup Microvia Printed Circuit Board,” IEEE Transactions on Components and Packaging Technology, Vol.25, NO.1 pp.51-54.
[15] J. W. Morris, Jr., J. L. F. Goldstein and Z. Mei, July 1993, “Microsturcture and Mechanical Properties of Sn-In and Sn-Bi Solders”, JOM, Vol. 45, No. 7, pp. 25-27.
[16] W. Yang and R. W. Messler, Jr., 1994, “Microstructure Evolution of Eutectic Sn-Ag SolderJoints,” Journal of Electronic Materials, Vol. 23, pp. 765-772.
[17] W. Yang, L. E. Felton, and Messler, Jr., R. W., 1995, ”The Effect of Soldering Process Variables on the Microstructure and Mechanical Properties of Eutectic Sn-Ag-Cu Solder Joints,” Journal of Electronic Materials, Vol. 24, No. 10, pp. 1465-1472.
[18] H. Yang, P. Deane, P. Magill, and K. L. Murty, 1996, “Creep Deformation of 96.5Sn/3.5Ag Solder Joints in a Flip-Chip Package,” Proceedings, 1996 Electronic Components and Technology Conference, Orlando, FL, pp. 1136-1142.
[19] A. M. Jackson, P. T. Vianco, and I. Artaki, 1994, “Manufacturing Feasibility of Several Lead-free Solders for Electronic Assembly,” Proceedings of the 7th International SAMPE Electronics Conference, Parsippany, NJ, pp. 381-391.
[20] P. T. Vianco, J. A. Rejent, and J. J. Martin, 2003, “The Compression Stress-Strain Behavior of Sn-Ag-Cu Solder,” JOM, Vol. 55, No. 6, pp. 50-55.
[21] P. T. Vianco, Jerome A. Rejent, and Paul F. Hlava, 2004, “Solid State Intermetallic Compound Layer Growth between Copper and 95.5Sn/3.9Ag/0.6Cu Solder,” Journal of Electronic Materials, Vol.33, pp. 991.
[22]P. T. Vianco, Jerome A. Rejent, and Alice C. Kilgo, 2004, “Creep Behavior of Ternary 95.5Sn/3.9Ag/0.6Cu-Part I: As-cast Condition,” Journal of Electronic Materials, Vol.33, pp. 1389.
[23] Edwin P. Lopez, P. T. Vianco, and Jerome A. Rejent, 2005 , “Solderability Testing of Sn-Ag-XCu Pb-free Solders on Copper and Au-Ni-plated Kovar Substrates,” Journal of Electronic Materials, Vol. 34, pp.299.
[24] S. H. Fan, Y. C. Chan, X. C. Zou, and Z. Q. Yu﹐1998﹐“The Effect of Reflow Condition on the Characteristics of PBGA Solder Joint,” Electronics Packaging Technology Conference , Singapore, pp.264-268.
[25]R. Erich, R. J. Coyle, G. M. Wenger, and A. Primavera﹐1999, “ Shear Testing and Failure Mode Analysis for Evaluation of BGA Ball Attachment,” Proceedings of the 24th IEEE/CPMT International Electronics Manufacturing Symposium, Austin, TX, pp.16-22.
[26] R. J. Coyle, A. Holliday, P. Mescher, P. P. Solan, S. A. Gahr, H. A. Cyker, J. K. Dorey, and T. I. Ejim﹐1999﹐“The Influence of Nickel/Gold Surface Finish on the Assembly Quality and Long Term Reliability of Thermally Enhanced BGA Packages,” Proceedings of the 24th IEEE/CPMT International Electronics Manufacturing Symposium, Austin, TX, pp.23-35.
[27] R. J. Coyle and P. P. Solan, 2000, “The Influence of Test Parameters and Package Design Features on Ball Shear Test Requirements,” Proceedings of the 26th IEEE/CPMT International Electronics Manufacturing Symposium, Santa Clara, CA, pp.168-177.
[28] R. J. Coyle and A. J. Serafino﹐2002﹐“Ball Shear versus Ball Pull Test Methods for Evaluating Interfacial Failures in Area Array Packages,” Proceedings of the 27th IEEE International Electronics Manufacturing Symposium, pp.200-205.
[39]S. W. R. Lee, C. C. Yan, Z. Karim, and X. Huang﹐2000﹐“Assessment on The Effects of Electroless Nickel Plating on the Reliability of Solder Ball Attachment to the Bond Pads of PBGA Substrate,” Proceedings 50th Electronic Components and Technology Conference, Las Vegas, NV, pp.868-873.
[30] F. Guo, S. Choi, J. P. Lucas, and K. N. Subramanian, 2000 , “Effects of Reflow on Wettability, Microstructure and Mechanical Properties in Lead-Free Solders,” Journal of Electronic Materials, Vol. 29, pp. 1241-1248.
[31] F. Guo, J. P. Lucas, and K. N. Subramanian, 2001, “Creep Behavior in Cu and Ag Particle-Reinforced Composite and Eutectic Sn/3.5Ag and Sn/4.0Ag/0.5Cu Non-Composite Solder Joints,” Journal of Material Science, Vol. 12, pp. 27-35.
[32] F. Guo, S. Choi, K. N. Subramanian, T. R. Bieler, J. P. Lucas, A. Achari, and M. Paruchuri, 2003, “Evaluation of Creep Behavior of Near-Eutectic Sn-Ag Solders Containing Small Amount of Alloy Additions,” Materials Science and Engineering A, Vol. 351, pp. 190-199.
[33] S.Wiese, A. Schubert, H. Walter, R. Dudek, F. Feustel, E. Meusel, and B. Michel, 2001 , “Constitutive Behaviour of Lead-free Solders vs. Lead-containing Solders Experiments on Bulk Specimens and Flip-Chip Joints,” Electronic Components and Technology Conference, Orlando, FL, pp. 890-902.
[34] M. Roellig, R. Dudek, S.Wiese, B. Boehme, B. Wunderle, K. J. Wolter and B. Michel, 2007 , “Fatigue Analysis of Miniaturized Lead-Free Solder Contacts Based on a Novel Test Concept,” Microelectronics Relaibility, Vol. 47, pp. 187-195.
[35]X. Huang, S. W. R. Lee, C. C. Yan, and S. Hui﹐2001﹐“Characterization and Analysis on the Solder Ball Shear Testing Conditions,” Proceedings 51st Electronic Components and Technology Conference, Orlando, FL, pp.1065-1071.
[36] A. Schubert, H. Walter, R. Dudek and B. Michel, 2001 , “Thermo-Mechanical Properties and Creep Deformation of Lead-containing and Lead-free Solders,” International Symposium on Advanced Packaging Materials. Braselton, Georgia, pp. 129-134.
[37] A. Schubert, R. Dudek, E. Auerswald, A. Gollhardt, B. Michel, and H. Reichl, 2003, “Fatigue Life Models for Sn-Ag-Cu and Sn-Pb Solder Jints Evaluated by Experiments and Simulation,” 2003 IEEE Electronic Components and Technology Conference, New Orleans, LA , pp.603-610.
[38] C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, 2002, “Microstructure and Mechanical Properties of New Lead-Free Sn-Cu-RE Solder Alloys,” J. Electron. Mater, Vol. 31, No. 9, pp. 928-932.
[39] C. M. L. Wu, D. Q. Yu, C. M. T. Law, and L. Wang, 2002, “Improvements of Microstructure, Wettability, Tensile and Creep Strength of Eutectic Sn-Ag Alloy by Doping with Rare-Earth Elements,” Journal of Materials Research, Vol. 17, pp. 3146-3154.
[40] X. Huang, S.W.R. Lee, and C. C. Yan﹐2002﹐“Experiment Investigation on the Progressive Failure Mechanism of Solder Balls During Ball Shear Test,” Proceedings 52nd Electronic Components and Technology Conference, New Orleans, LA, pp.968-973.
[41] I. E. Anderson, B. A. Cook, J. Harringa, and R. L. Terpstra, 2002, “Microstructural Modifications and Properties of Sn-Ag-Cu Solder Joints Induced by Alloying,” Journal of Electronic Materials, Vol. 31, pp. 1166-1174.
[42] I. E. Anderson, B. A. Cook, J. L. Harringa, and R. L. Terpstra, 2002, “Sn-Ag-Cu Solders and Solder Joints: Alloy Development, Microstructure, and Properties,” JOM, Vol. 54, pp. 26-29.
[43] I. E. Anderson, and J.L. Harringa, 2004, “Elevated Temperature Aging of solder Joints Based on Sn-Ag-Cu: Effects on Joint Microstructure and Shear Strength,” Journal of Electronic Materials, Vol. 33, No.12, pp. 1485-1496.
[44] J. W. Fan, C. T. Kuo, and M. C. Yip﹐2003﹐“Mechanical Characterization of Board-Level 63Sn/37Pb and Lead-free solder Sphere Attachment on Cu-Pad/Ni/Au Surface Finish,” Electronics Packaging Technology Conference , Singapore, pp.712-717.
[45]Ikuo Shohji, Satoshi Shimoyama, Hisao Ishikawa and Masao Kojima , 2008, “Effect of Shear Speed on Ball Shear Strength of Sn/3Ag/0.5Cu Solder Ball Joint,” Transactions of the Japan Institute of Electronics Packaging, 1, pp.9-14.
[46] Ikuo Shohji, Tomotake Tohei, Keisuke Yoshizawa, Masaharu Nishimoto, Yasushi Ogawa and Takayuki Kawano, 2008, “Effect of Thermal Cycle Conditions on Thermal Fatigue Life of Chip Size Package Solder Joint,” Key Engineering Materials, Vol.385-387, pp.433-436.
[47] Ikuo Shohji, Satoshi Shimoyama, Hisao Ishikawa, and Masao Kojima, 2008, “Compare of Impact Properties of Sn/9Zn and Sn/3Ag/0.5Cu Lead-free Solder Ball Joints,” Key Engineering Materials, Vol.385-387, pp.429-432.
[48] Ikuo Shohji, Tomotake Tohei, Keisuke Yoshizawa, Masaharu Nishimoto, Yasushi Ogawa and Takayuki Kawano , 2008, “Effect of Underfill Materials on Thermal Fatigue Lives of Chip Size Package Solder Joints,” Smart Processing Technology, Vol.2, pp.111-114.
[49] Ikuo Shohji, Tsutomu Osawa, Takashige Matsuki, Yoshiharu Kariya, Kiyokazu Yasuda and Tadashi Takemoto , 2008, “Effect of Specimen Size and Aging on Tensile Properties of Sn-Ag-Cu Lead-free Solders,” Materials Transactions, Vol.49, No.5, pp.1175-1179.
[50] Tomotake Tohei, Ikuo Shohji, Keisuke Yoshizawa, Masaharu Nishimoto, Takayuki Kawano, Yumiko Mizutani and Yoshihiko Ohsaki , 2008, “Thermal Fatigue Life Evaluation of Lead-Free Solder Joint of Chip Size Package with Underfill,” J. Japan Inst. Metals,Vol.72, No.3, pp.244-248.
[51] 沈茂田,2000,“雷射二極體模組殘留應力及潛變效應之研究”,國立中山大學機械工程研究所,博士論文。
[52] Feng Gao, Hiroshi Nishikawa, Tadashi Takemoto, Jianmin Qu, 2008, “Temperature Dependence of Mechanical Properties of Individual Phases inSn-3.0Ag-0.5Cu Lead-free Solder Alloy,” Electronic Components and Technology Conference, Miami, Florida, pp .466-471.
[53] Edwin Bradley, Carol Handweker and John E. Sohn, 2003, “NEMI report: A single Lead-free Alloy is Recommend,” Surface Mount Technology, pp. 24-25.
[54] 黃志堯,SMIC,日商千住金屬工業股份有限公司台灣分公司。
[55] A. Schubert, R. Dudek, H. Walter, E. Jung , A. Gollhardt, B. Michel, and H. Reichl, 2002, “Reliability Assessment of Flip-Chip Assemblies with Lead-free Solder Joints,” 2002 IEEE Electronic Component and Technology Conference, New Orleans, LA, pp. 1246-1255.
[56]Q. Tan and Y. C. Lee, 1996, “Soldering Technology for Optoelectronic Packaging,” 1996 IEEE Electronic Component and Technology Conference, Orlando, FL, pp. 26-36.
[57] JEDEC Solid State Technology Association, 2000﹐“Temperature Cycling,” JESD22-A104B, JEDEC Solid State Technology Association, VA.
[58] IPC/JEDECJ-STD-020-B, 2002, “Moisture / Re-flow Sensitivity Classification for Non-hermetic Solid State Surface Mount Devices.”
[59]D. Bhate, D. Chan, G. Subbarayan, T. C. Chiu, V. Gupta, and D. R. Edwards, 2008, “Constitutive Behavior of Sn/3.8Ag/0.7Cu and Sn/1.0Ag/0.5Cu Alloys at Creep and Low Strain Rate Regimes,” Proceedings of the IEEE Transactions on Components and Packaging Technologies, Seattle, WA, Vol 31, pp. 622-633.
[60]N. Bai, X. Chen and Z. Fang, 2008, “Effect of Strain Rate and Temperature on the Tensile Properties of Tin-Based Lead-Free Solder Alloys, ” Journal of Electronic Materials, Vol.37, No.7, pp.1012-1019.
[61]E. H. Wong, C. S. Selvanayagam, S. K. W. Seah, W. D. Van Driel, J. F. J. M. Caers, X. J. Zhao, N. Owens, L. C. Tan, D. R. Frear, M. Leoni, Y. S. Lai, and C. L. Yeh, 2008, “Stress–Strain Characteristics of Tin-Based Solder Alloys for Drop-Impact Modeling,” Journal of Electronic Materials, Vol. 37, No. 6, pp. 829-836.
[62] M. E. Erinc, T. M. Assman, P.J.G. Schreurs, and M.G. D. Geers, 2008, “Fatigue Fracture of Sn-Ag-Cu Solder Joints by Microstructural Modeling,” Int. J. Fracture, 152(1), 37-49.
[63] M. E. Erinc, P. J. G. Schreurs, M. G. D. Geers, 2008, “Intergranular Thermal Fatigue Damage Evolution in Sn-Ag-Cu Lead-Free Solder,” Mech. Mat., 40, 780-791.
[64] S. W. Chen, C. H. Wang, S. K. Lin and C. N. Chiu, 2007, “Phase Diagrams of Pb-free Solders and Their Related Materials Systems,” J. Mater. Sci. Mater. Electron. pp.18-19.
[65] C. T. Huang, 2007, “Comparison on Creep Behaviors and Fatigue Strength Prediction of Lead-Free Solder Joint in High Density Packages,” Dept. of Mechanical Engineering, Chung Yuan Christian University, Taiwan.
[66] D. Monlevade, Eduardo, and Weiqun Peng, 2007, “Failure Mechanisms and Crack Propagation Paths in Thermally Aged Pb-Free Solder Interconnects,” J. Electron. Mater. 36,783.
[67] J. K. Shang, Q. L. Zeng, L. Zhang, and Q. S. Zhu, 2007, “Mechanical Fatigue of Sn-rich Pb-free Solder Alloys,” J. of Mater. Sc : Mater. in Electron., Vol. 18(1-3), pp. 211-227.
[68] A. Matin, W. P. Vellinga, and M. G. D. Geers, 2007, “Thermomechanical Fatigue Damage Evolution in SAC Solder Joints,” Mat. Sci. Eng.: A, 445, 73-85.
[69] P. K. Bhatti, P. Min, and F. Xuejun, 2006, “Reliability Analysis of Sn-Pb and Sn-Ag-Cu Solder Joints in FC-BGA Packages with Thermal Enabling Preload,” Proceedings of the Electronic Components and Technology Conference , San Diego, CA, pp. 601-606.
[70] F. P. McCluskey, M. Dash, Z. Wang, and D. Huf, 2006, “Reliability of High Temperature Solder Alternatives,” Microelectronics Reliability, Vol.46, Issue 9-11, pp.1910-1914.
[71] F. L. Zhu, H. H. Zhang, R. F. Guan , S. Liu, and Y. B. Yang, 2006, “ Investigation of Temperature and Strain Rate Behavior of Lead-free,” The 13th International Symposium on Physical and Failure Analysis of Integrated Circuits 2006 (IPFA2006), Singapore, 7. 3-7.
[72] J. J. Sundelin, S.T. Nurmi, T. K. Lepist‥o, and E. O. Ristolainen, 2006, “Mechanical and Microstructural Properties of Sn-Ag-Cu Solder Joints,” Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, Vol.420, Issue 1-2, pp.55-62.
[73] M.F. Arenas, M. He and V.L. Acoff, 2006, “Effect of Flux on the Wetting Characteristics of Sn-Ag Sn-Cu Sn-Ag-Bi and Sn-Ag-Cu Lead Free Solders on Coppers Substrate,” Journal of Electronic Materials”, Vol. 35, pp. 1530-1536.
[74]C.K. Lin and D.Y. Chu, 2006, “Creep Rupture of a Lead-Free Sn-Ag-Cu Solder,” in Proceedings of the 16th European Conference of Fracture (CD-ROM), Alexandroupolis, Greece, July 3-7.
[75]Fulong Zhu, Honghai Zhang, Rongfeng Guan, and Sheng Liu, 2006, “Investigate of Microstructures and Tensile Properties of a Sn-Cu Lead-free Solder Alloy,” Journal of Materials Science: Materials in Electronics, Vol.17, N5, pp.379-384.
[76]C. Andersson, Z. Lai, J. Liu, H. Jiang, and Y. Yu, 2005, “Comparison of Isothermal Mechanical Fatigue Properties of Lead-free Solder Joints and Bulk Solders, ” Materials Science and Engineering A, Vol.394, Issue 1-2, pp.20-27.
[77]H.T. Lee, H.S. Lee, C.S. Lee, and P.W. Chen, 2005, “Reliability of Sn-Ag-Sb Lead-free Solder Joints,” Materials Science and Engineering A, Vol.407, Issue 1-2, pp.36-44.
[78]F. Q. Lang, H. Tanaka, O. Munegata, T. Taguchi, and T. Narita, 2005, “The Effect of Strain Rate and Temperature on the Tensile Properties of Sn-3.5Ag Solder,” Materials Characterization, Vol.54, Issue 3, pp.223-229.
[79]黃俊鳴、林志光,2005, “Strain-Ratio Effect on Low-Cycle Fatigue of Lead-Free Sn/3.5Ag/0.5Cu Solder,” 中華民國材料科學學會2005年度年會論文集(光碟版),中華民國材料科學學會出版。
[80]G. M. Chen and G. Z. Jusheng, 2005, “Fabrication and Properties of Lead-free Sn-Ag-Cu-Ga Solder Alloy,” Materials Science Forum, v 475-479, pp.1747-1750.
[81]G. Y. Jang and J. G. Duh, 2005, “The Effect of Intel-Metallic Compound Morphology on Cu Diffusion in Sn-Ag and Sn-Pb Solder Bump on the Ni/Cu Under-Bump Metallization,” Journal of Electronic Materials, v 34, n 1, January, pp.68-79.
[82] Ikuo Shohji, Kiyokazu Yasuda, and Tadashi Takemoto, 2005, “Estimation of Thermal Fatigue Resistances of Sn-Ag and Sn-Ag-Cu Lead-free Solders Using Strain Rate Sensitivity Index,” Materials Transactions, Vol.46, No.11, pp.2329-2334
[83]A. Syed, 2004, “Accumulated Creep Strain and Energy Density Based Thermal Fatigue Life Prediction Models for Sn-Ag-Cu Solder Joints,” Electronic Components and Technology Conference, Las Vegas, NV, Vol.1, pp.737-746.
[84]T. M. K. Korhonen, P. Turpeinen, L. P. Lehman, B. Bowman, G. H. Thiel, R. C. Parkes, M. A. Korhonen, D. W. Henderson, and K. J. Puttlitz, 2004, “Mechanical Properties of Near-Eutectic Sn-Ag-Cu Alloy over a Wide Range of Temperatures and Strain Rates,” Journal of Electronic Materials, Vol. 33, No. 12, pp. 1581-1588.
[85] F. Ochoa, J. J. Williams, and N. Chawla, 2003, “Effects of Cooling Rate on the Microstructure and Tensile Behavior of a Sn-3.5wt.%Ag Solder,” Journal of Electronic Materials, Vol. 32, pp.1414-1420.
[86]D. K. Joo, J. Yu, and S. W. Shin, 2003, “Creep Rupture of Lead-Free Sn/3.5Ag/Cu Solders,” Journal of Electronic Materials, Vol. 32, 2003, pp. 541-547.
[87] M. Kanchanomai, M. Y. Yukio, and Mutoh, 2002, “Low-Cycle Fatigue Behavior of Sn-Ag, Sn-Ag-Cu, and Sn-Ag-Cu -Bi Lead-Free Solders,” Journal of Electronic Materials, v 31, n 5, May, pp. 456-465
[88]K. S. Kim, S. H. Huh, and K. Suganuma, 2002, “Effects of Cooling Speed on Microstructure and Tensile Properties of Sn-Ag-Cu Alloys,” Materials Science and Engineering A, Vol. 333, pp.106-114.
[89]H. G. Song, J. W. Morris, Jr., and F. Hua, 2002, “Anomalous Creep in Sn-Rich Solder Joints,” Materials Transactions, Vol. 43, pp. 1874-1853.
[90]M. L. Huang and L. Wang, 2002, “Creep Behavior of Eutectic Sn-Ag Lead-Free Solder Alloy,” Journal of Materials Research, Vol. 17, pp. 2897-2903.
[91]W. J. Plumbridge, C. R. Gagg, and S. Peters, 2001, “The Creep of Lead-Free Solders at Elevated Temperatures,” Journal of Electronic Materials, Vol. 30, pp. 1178-1183.
[92]S. G. Jadhav, T. R. Bieler, K. N. Subramanian, and J. P. Lucas, 2001, “Stress Relaxation Behavior of Composite and Eutectic Sn-Ag Solder Joints,” Journal of Electronic Materials, Vol. 30, pp. 1197-1205.
[93]M. Abtew and G. Selvaduray, 2000, “Lead-Free Solders in Microelectronics,” Materials Science and Engineering R, Vol. 27, pp. 95-141.
[94]V. I. Igoshev, J. I. Kleiman, D. Shangguan, S. Wong, and U. Michon, 2000, “Fracture of Sn/3.5Ag Solder Alloy under Creep,” Journal of Electronic Materials, Vol. 29, pp. 1356-1361.
[95] J. Villain, O. Bruller, and T. Qasim, 2000, “Creep Deformation of the Lead-Free Solder alloy Sn/3.5Ag at High Homologues Temperatures Using laser Extensometry with Miniprobes, ” Proceedings, SMT ES&S Hybrid Conference, Nuremberg, Germany, June 27-29, pp. 143-147.
[96]M. E. Loomans and M. E. Fine, 2000, “Tin-Silver-Copper Eutectic Temperature and Composition,” Metallurgical and Materials Transactions A, Vol. 31A, pp.1155-1162.
[97]K. W. Moon, W. J. Boettinger, U. R. Kattner, F. S. Biancaniello, and C. A. Handwerker, 2000, “Experimental and Thermodynamic Assessment of Sn-Ag-Cu Solder Alloys,” Journal of Electronic Materials, Vol. 29, pp. 1122-1136.
[98]陳明宏,1999,“錫銲接點之機械性質與顯微組織研究”,國立成功大學機械研究所,碩士論文。
[99]Z. Qian, M. Lu, R. Wei, and S. Liu, 1999, “Fatigue Life Prediction of Flip-Chips in Terms of Nonlinear Behaviors of Solder and Underfill,” Electronic Components and Technology Conference, Las Vegas, NV, pp. 141-148,
[100]W. J. Plumbridge and C. R. Gagg, “Effects of Strain Rate and Temperature on the Stress-Strain Response of Solder Alloys,” Journal of Materials Science: Materials in Electronics, Vol. 10, 1999, pp. 461-468.
[101]N. Wade, T. Akuzawa, S. Yamada, D. Sugiyama, I. Kim, and K. Miyahara, “Effects of Microalloying on the Creep Strength and Microstructure of an Eutectic Sn-Pb Solder Alloy,” Journal of Electronic Materials, Vol. 28, 1999, pp. 1286-1289.
[102] J. H. L. Pang, T.I. Tan, 1998, “Thermo-Mechanical Analysis of Solder Joint Fatigue and Creep in a Flip Chip on Board Package Subjected to Temperature Cycling Loading,” 1998 Electronic Components and Technology Conference, Seattle, WA, pp. 878-883.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔