[1] Marissen, R., “Flight Simulation Behaviour of Aramid Reinforced Aluminum Laminates (ARALL)”, Eng. Fract. Mech., Vol. 19, No. 2, 1984, pp.261-277.
[2] Marissen, R., Trautmann, K. H., Foth, J. and Nowack, H.,“Microcrack Growth in Aramid Reinforced Aluminum Laminates (ARALL)”, Fatigue 84, Proc. 2nd Int. Conf. On Fatigue and Fatigue thresholds (edited by C. J. Beevers), Vol. Ⅱ, EMAS Ltd. Warley, U.K., 1984, pp. 1081-1089.
[3] Marissen, R., “Fatigue Mechanisms in ARALL, a Fatigue Resistant Hybrid aluminum Aramid Composite Material”, Fatigue 87, Proc. 3rd Int. Conf. on Fatigue and Fatigue thresholds (Edited by R. O. Ritchie and E. A. Starke), Vol. 3, EMAS Ltd. Warley, U.K., 1987, pp. 1271-1279.
[4] Lin, C. T., Yang, F. S. and Kao, P. W., “Fatigue Behavior of Carbon Fibre-Reinforced Aluminum Laminates”, COMPOSITES, Vol. 22, No. 2, 1991, pp. 135-141.
[5] Ritchie, R. O., Yu, W. and Bucci, R. J., “Fatigue Crack Propagation in ARALL Laminates: Measurement of the Effect of Crack-tip Shielding from Crack Bridging”, Eng. Fract. Mech., Vol. 32, No. 3,
1989, pp.361-377.
[6] Macheret, J., Teply, J. L. and Winter, E. F. M., “Delamination Shape Effects in Aramid-Epoxy-Aluminum ( ARALL ) Laminates with Fatigue Cracks”, Polym. Composites, Vol. 10, No. 5, 1989, pp. 322-327.
[7] Lin, C. T, Kao, P. W, Jen, M. -H.R., “Thermal Residual Strains in Carbon Fiber-Reinforced Aluminum Laminates,” COMPOSITES, Vol.25, No.4, 1994, pp. 303-307.
[8] Grubbs, Charles A., 2002, “Anodizing of Aluminum”, Metal Finishing, Vol.100, pp.463-478.
[9] Thrall, Edward W., and Shannon, Raymond W., 1985, “Adhesive bonding of aluminum alloys”, Marcel Dekker Co. Inc.
[10] Pinner, R., and Sheasby, P.G., 1987, “The Surface Treatment and Finishing of Aluminum and its Alloys”, Metals Park, Ohio : ASM International.
[11] Diao, X., Lin, T., and Mai, Y. W., 1997,“Fatigue Behavior of CF/ PEEK Composites Kaminates Made From Commingled Prepreg.115 Part Ⅱ:Statistical Simulation“, Composite Part-A, pp.749-755.
[12] Gardin, C. H., and Frenot, M. C. L., 1992, “Fatigue Behavior of Thermoset and Thermoplastic Cross-Ply Laminates“, Composites,Vol.23, pp.109-116.
[13] Moffatt, J.E., and Plumbridge, W.J., and Hermann, R., 1997, “High Temperature Crack Annealing Effects on Fracture Toughness of Alumina and Alumina-SiC composite”, British Ceramic Transactions, Vol.96, pp.23-29.
[14] Rao, K.T.V., and Ritchie, R.O.,1998, “High-Temperature Fracture and Fatigue Resistance of a Ductile B-TiNb Reinforced G-TiAl Intermetallic Composite”, Acta Materialia, Vol.46, pp.4167-4180.
[15] Xia,K., and Langdon, T.G., 1996, “Fracture Behavior at Elevated Temperatures of Alumina Matrix Composites Reinforced with Silicon Carbide Whiskers”, Journal of Materials Science, Vol.31, pp.5487-5492.
[16] Subramanian S., Reifsnider K.L., and Stinchcomb W.W., 1995, “A Cumulative Damage Model to Predict The Fatigue Life of Composite Laminates Including The Effect of a Fiber-Matrix Interphase”, International Journal of Fatigue, Vol.17, pp.343-351.
[17] Miyano, Y., and Nakada, M., 1997, “Prediction of Flexural Fatigue Strength of CRFP Composites Under Arbitrary Frequency, Stress Ratio and Temperature”, Journal of Composite Materials, Vol.31, pp.619-638.
[18] Schaff, J. R., 1997, “Life Prediction Methodology for Composite Structures. Part Ⅱ-Spectrum Fatigue”, Journal of Composite Materials, Vol.31, pp.158-181.
[19] Song, D. Y., 1997, “Fatigue Life Prediction of Cross-Ply Composite Laminates”, Materials Science and Engineering-A, pp.329-335.
[20] Hwang, W., and Han, K. S., 1989, “Fatigue of Composite Materials-Damage Model and Life Prediction”, American Society for Testing and Materials STP 1012, Philadelphia, pp.87-102.
[21] Knut, O. R., and Andreas, T. E., 1996, “Estimation of Fatigue Curves for Design of Composite Laminates”, Composites Part-A,pp.485-491.
[22] Kawai, M., and Maki, N., 2006 “Fatigue Strength of Cross-ply CFRP Laminates at Room and High Temperature and Its Phenomenological Modeling”. International Journal of Fatigue, vol.28, pp.1297-1306.
[23] Spearing, S. M., Beaumont, P. W. R., and Kortschot, M. T., 1992 “The Fatigue Damage Mechanics of Notched Carbon Fibre/PEEK Laminates”. Composites, Vol.23 No.5, pp.305-311
[24] Ferreria J. A., Costa J. D., and Richardson M. O., 1997 “Effect of Notch and Test Conditions on the Fatigue of a Glass-Fibre-Reinforced Polypropylene Composite”. Composites Science and Technology. Vol.57, pp.1243-1248.
[25] Sung W. Choi, H. Thomas Hahn, and Peter Shyprykevich, 2002 “Damage Development in Notched Composite Laminates Under Compression-Dominated Fatigue”. Composites Science and
Technology, Vol.62, pp.851-860.
[26] Cortes’ P., and Cantwell W. J., 2006 “The Fracture Properties of a Fibre-Metal Laminate Based on Magnesium Alloy“. Composites Part B, No.37, pp.163-170.
[27] Dimant R.A., and Shercliff H.R., and P.W.R. Beaumont.,2002, “Evaluation of a damage-mechanics approach to the modeling of notched strength in KFRP and GRP cross-ply laminate.” Composites Science and Technology, Vol.62, pp.255-263.
[28] Wang, C. M., and Shin, C. S., 2002, “Residual properties of notched [0/90]4S AS4/PEEK composite laminates after fatigue and re-consolidation” Composites:Part B(33),pp.67-76.
[29] 張熙超, 1999,“ 碳纖維/聚醚醚酮複合材料積層板鑽孔及溫度效應之破壞機制與機械性質分析 ”, 國立中山大學機械所碩士論文.[30] 曾育鍾, 2000, ” 中央鑽孔碳纖維/聚二醚酮複材積層板之高溫疲勞探討 ”, 國立中山大學機械所碩士論文.[31] 蔡健民, 2003, ” 以奈米粉體強化之高性能高分子PEEK 製程與機械性質分析 ”, 國立中山大學材料科學所碩士論文[32] 吳俊憲, 2004, “ 石墨纖維/聚醚醚酮奈米複材積層板之研製與機械性能探討 ”, 國立中山大學機電所碩士論文.[33] 黃育信,2005,“奈米複材積層板承受高溫疲勞作用其機械性能之探討”, 國立中山大學機電所碩士論文.[34] 李秉原, 2006, ”鎂合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性能探討” , 國立中山大學機電所碩士論文.[35] 邱岩諺, 2007, ”中央鑽孔鎂合金/碳纖維/聚醚醚酮複材積層板之研製與機械性能探討” , 國立中山大學機電所碩士論文.[36] 賴盈達, 2008, ”鋁合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性能探討” , 國立中山大學機電所碩士論文.