跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/08 04:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉醇淦
研究生(外文):Chun-Kan Liu
論文名稱:中央鑽孔鋁合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性質探討
論文名稱(外文):Manufacturing and Mechanical Properties of Centrally NotchedAL/APC-2 Nanocomposite Laminates
指導教授:任明華任明華引用關係
指導教授(外文):Ming-Hwa R. Jen
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:141
中文關鍵詞:鋁合金疲勞高溫鑽孔奈米複材積層板
外文關鍵詞:APC-2NotchNanocomposite LaminateAluminum AlloyElevated TemperatureFatigue
相關次數:
  • 被引用被引用:0
  • 點閱點閱:356
  • 評分評分:
  • 下載下載:91
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在探討中央鑽孔鋁合金碳纖維奈米複材積層板常溫及高溫機械性質。使用三層厚度0.5mm的鋁合金薄板及兩層0.55碳纖維/聚醚醚酮預浸布堆疊而成。首先在預浸布表面均勻塗佈SiO2奈米微粒,並依十字疊[0/90]s和類似均向疊[0/45/90/-45]兩種疊序研製五層異向性複材積層板。鋁合金薄板以鉻酸陽極處理法進行表面處理,再使用改良隔膜成型法固化成型。完成後的積層板切割成試片再使用鑽孔機在試片中央鑽出直徑1mm、2mm、4mm、6mm圓孔。拉伸與疲勞測試是以MTS 810材料測試試驗機來進行,並以MTS 651環境控制箱來保持特定測試溫度,如RT、75°C、100°C、125°C與150°C。
首先進行RT及75°C、100°C、125°C和150°C下的靜態拉伸試驗以獲得各溫度與孔徑下之極限強度並依所得試驗數據繪製應力-應變曲線;在疲勞測試中,所採用的負載形式為拉伸-拉伸,應力比為0.1,頻率為5Hz,而負載波型為正弦波型,並以負荷控制作為控制模式,最後將疲勞實驗所得數據在不同環境溫度參數下繪製成應力-振次(S-N)曲線。
在拉伸試驗方面,在相同溫度時,十字疊試片之極限強度略高於類似均向疊試片。鑚孔試片與未鑽孔十字疊試片比較,鑚孔孔徑1mm至6mm之極限強度約為未鑚孔試片的60%到80%。之後比較鑚孔與未鑽孔類似均向疊試片,鑚孔孔徑1mm至6mm之極限強度約為未鑚孔試片的75%到85%。 接著進行各溫度下拉伸-拉伸疲勞實驗,以獲致各溫度下鑽孔試片疲勞壽命以及應力-振次(S-N)曲線,負載相同的情況下,鑽孔試片抗疲勞性質較差;但在相同之無因次化應力比值時,十字疊鑽孔試片之無因次化S-N曲線皆在未鑽孔試片無因次化S-N曲線之上,因為採用鑽孔應力無因次化之故。隨著溫度提高,鑽孔試片的抗疲勞性質隨之下降。

The purpose of thesis aims to investigate the mechanical behavior and properties of a centrally notched hybrid Al alloy/Carbon-Fiber/PEEK(APC-2) laminate at elevated temperature. The high performance hybrid composite laminates of 0.5mm Aluminum alloy sheets sandwiched by APC-2 cross-ply and guasi-isotropic laminates were fabricated. The prepregs of APC-2 were stacked into cross-ply [0/90]s and quasi-isotropic [0/45/90/-45] laminates spread uniformly with nanoparticles SiO2. The sheet surface was treated by chromic acid anodic method to achieve perfectly bonding with matrix PEEK. The modified diaphragm curing process was adopted to fabricate Al/APC-2 hybrid nanocomposite laminates. The panels were cut into the specimens and then drilled an diameter hole in the center with diameters of 1,2,4,6 mm. The MTS 810 material testing machine was used to conduct the tension and fatigue tests. In addition, the MTS 651 environmental chamber was installed to control and keep the specific testing temperatures, such as ,25°C(RT), 75°C, 100°C, 125°C and 150°C.
At first, the nominal stress(σnom) and stress-strain diagram were obtained due to static tension tests at elevated temperature. The constant stress amplitude tension-tension cyclic tests were carried out by using load-control mode at a sinusoidal loading with frequency of 5Hz and stress ratio R=0.1. The received fatigue data were plotted in normalized S-N curves at variously elevated temperature.
For the tensile tests, at the same temperature the nominal stress of cross-ply specimens was higher than that of quasi-isotropic specimens. Comparing with the notched and unnotched of cross-ply specimens, the nominal stress of notched specimens was about 60% to 80% that of unnotched specimens. Besides, as for the notched and unnotched quasi-isotropic specimens, the nominal stress of notched specimens was about 75% to 85% that of unnotched specimens. Then, the fatigue life and stress-cycles (S-N) curves of notched specimens were obtained often tension-tension fatigue tests. In the case of the same loading, notched specimens possess worse fatigue behavior, but in the same normalized stress ratio, the S-N curves of the unnotched were below the notched ones. The fatigue resistance of notched samples decrease as the temperature rising.

目錄 ...................................................................................... I
圖 目 錄 ............................................................................... III
表目錄 ................................................................................. IX
摘要 .................................................................................. XIX
英文摘要 ........................................................................... XX
第一章 緒論....................................................................... 1
1-1 前言............................................................................. 1
1-2 材料簡介 .................................................................... 1
1-2-1 複合材料概述 ........................................................ 1
1-2-2 奈米複合材料簡介 ................................................ 2
1-2-3 實驗材料性質簡介 ................................................ 3
1-3 研究方向 .................................................................... 3
1-4 文獻回顧 .................................................................... 4
1-5 組織與章節 ................................................................ 6
第二章 研究方法 .............................................................. 8
2-1 實驗簡述 .................................................................... 8
2-2 儀器設備 .................................................................... 8
2-3 鋁合金複材積層板之製程 .........................................9
2-3-1 鋁合金之前處理 .................................................... 9
2-3-2 APC-2 之前處理 .................................................. 10
2-3-3 熱壓製程 ................................................................11
2-4 試片切割及鑽孔 ....................................................... 12
2-5 拉伸與疲勞實驗 ....................................................... 13
2-6 掃瞄式電子顯微鏡(SEM) ........................................ 14
第三章 實驗結果 ............................................................. 22
3-1 靜態拉伸實驗 ........................................................... 22
3-2 疲勞實驗 ................................................................... 23
3-3 鋁合金表面處理 ....................................................... 25
第四章 分析與討論 ......................................................... 89
4-1 鑽孔對複材積層板機械性質之影響 ....................... 89
4-1-1 極限強度與彈性係數ES ...................................... 89
4-1-2 抗疲勞性質 ........................................................... 92
4-2 破斷面觀察 ............................................................... 94
第五章 結論.................................................................... 112
5-1 結論 ......................................................................... 112
5-2 建議 ......................................................................... 113
參考文獻 ........................................................................ 114
[1] Marissen, R., “Flight Simulation Behaviour of Aramid Reinforced Aluminum Laminates (ARALL)”, Eng. Fract. Mech., Vol. 19, No. 2, 1984, pp.261-277.
[2] Marissen, R., Trautmann, K. H., Foth, J. and Nowack, H.,“Microcrack Growth in Aramid Reinforced Aluminum Laminates (ARALL)”, Fatigue 84, Proc. 2nd Int. Conf. On Fatigue and Fatigue thresholds (edited by C. J. Beevers), Vol. Ⅱ, EMAS Ltd. Warley, U.K., 1984, pp. 1081-1089.
[3] Marissen, R., “Fatigue Mechanisms in ARALL, a Fatigue Resistant Hybrid aluminum Aramid Composite Material”, Fatigue 87, Proc. 3rd Int. Conf. on Fatigue and Fatigue thresholds (Edited by R. O. Ritchie and E. A. Starke), Vol. 3, EMAS Ltd. Warley, U.K., 1987, pp. 1271-1279.
[4] Lin, C. T., Yang, F. S. and Kao, P. W., “Fatigue Behavior of Carbon Fibre-Reinforced Aluminum Laminates”, COMPOSITES, Vol. 22, No. 2, 1991, pp. 135-141.
[5] Ritchie, R. O., Yu, W. and Bucci, R. J., “Fatigue Crack Propagation in ARALL Laminates: Measurement of the Effect of Crack-tip Shielding from Crack Bridging”, Eng. Fract. Mech., Vol. 32, No. 3,
1989, pp.361-377.
[6] Macheret, J., Teply, J. L. and Winter, E. F. M., “Delamination Shape Effects in Aramid-Epoxy-Aluminum ( ARALL ) Laminates with Fatigue Cracks”, Polym. Composites, Vol. 10, No. 5, 1989, pp. 322-327.
[7] Lin, C. T, Kao, P. W, Jen, M. -H.R., “Thermal Residual Strains in Carbon Fiber-Reinforced Aluminum Laminates,” COMPOSITES, Vol.25, No.4, 1994, pp. 303-307.
[8] Grubbs, Charles A., 2002, “Anodizing of Aluminum”, Metal Finishing, Vol.100, pp.463-478.
[9] Thrall, Edward W., and Shannon, Raymond W., 1985, “Adhesive bonding of aluminum alloys”, Marcel Dekker Co. Inc.
[10] Pinner, R., and Sheasby, P.G., 1987, “The Surface Treatment and Finishing of Aluminum and its Alloys”, Metals Park, Ohio : ASM International.
[11] Diao, X., Lin, T., and Mai, Y. W., 1997,“Fatigue Behavior of CF/ PEEK Composites Kaminates Made From Commingled Prepreg.115 Part Ⅱ:Statistical Simulation“, Composite Part-A, pp.749-755.
[12] Gardin, C. H., and Frenot, M. C. L., 1992, “Fatigue Behavior of Thermoset and Thermoplastic Cross-Ply Laminates“, Composites,Vol.23, pp.109-116.
[13] Moffatt, J.E., and Plumbridge, W.J., and Hermann, R., 1997, “High Temperature Crack Annealing Effects on Fracture Toughness of Alumina and Alumina-SiC composite”, British Ceramic Transactions, Vol.96, pp.23-29.
[14] Rao, K.T.V., and Ritchie, R.O.,1998, “High-Temperature Fracture and Fatigue Resistance of a Ductile B-TiNb Reinforced G-TiAl Intermetallic Composite”, Acta Materialia, Vol.46, pp.4167-4180.
[15] Xia,K., and Langdon, T.G., 1996, “Fracture Behavior at Elevated Temperatures of Alumina Matrix Composites Reinforced with Silicon Carbide Whiskers”, Journal of Materials Science, Vol.31, pp.5487-5492.
[16] Subramanian S., Reifsnider K.L., and Stinchcomb W.W., 1995, “A Cumulative Damage Model to Predict The Fatigue Life of Composite Laminates Including The Effect of a Fiber-Matrix Interphase”, International Journal of Fatigue, Vol.17, pp.343-351.
[17] Miyano, Y., and Nakada, M., 1997, “Prediction of Flexural Fatigue Strength of CRFP Composites Under Arbitrary Frequency, Stress Ratio and Temperature”, Journal of Composite Materials, Vol.31, pp.619-638.
[18] Schaff, J. R., 1997, “Life Prediction Methodology for Composite Structures. Part Ⅱ-Spectrum Fatigue”, Journal of Composite Materials, Vol.31, pp.158-181.
[19] Song, D. Y., 1997, “Fatigue Life Prediction of Cross-Ply Composite Laminates”, Materials Science and Engineering-A, pp.329-335.
[20] Hwang, W., and Han, K. S., 1989, “Fatigue of Composite Materials-Damage Model and Life Prediction”, American Society for Testing and Materials STP 1012, Philadelphia, pp.87-102.
[21] Knut, O. R., and Andreas, T. E., 1996, “Estimation of Fatigue Curves for Design of Composite Laminates”, Composites Part-A,pp.485-491.
[22] Kawai, M., and Maki, N., 2006 “Fatigue Strength of Cross-ply CFRP Laminates at Room and High Temperature and Its Phenomenological Modeling”. International Journal of Fatigue, vol.28, pp.1297-1306.
[23] Spearing, S. M., Beaumont, P. W. R., and Kortschot, M. T., 1992 “The Fatigue Damage Mechanics of Notched Carbon Fibre/PEEK Laminates”. Composites, Vol.23 No.5, pp.305-311
[24] Ferreria J. A., Costa J. D., and Richardson M. O., 1997 “Effect of Notch and Test Conditions on the Fatigue of a Glass-Fibre-Reinforced Polypropylene Composite”. Composites Science and Technology. Vol.57, pp.1243-1248.
[25] Sung W. Choi, H. Thomas Hahn, and Peter Shyprykevich, 2002 “Damage Development in Notched Composite Laminates Under Compression-Dominated Fatigue”. Composites Science and
Technology, Vol.62, pp.851-860.
[26] Cortes’ P., and Cantwell W. J., 2006 “The Fracture Properties of a Fibre-Metal Laminate Based on Magnesium Alloy“. Composites Part B, No.37, pp.163-170.
[27] Dimant R.A., and Shercliff H.R., and P.W.R. Beaumont.,2002, “Evaluation of a damage-mechanics approach to the modeling of notched strength in KFRP and GRP cross-ply laminate.” Composites Science and Technology, Vol.62, pp.255-263.
[28] Wang, C. M., and Shin, C. S., 2002, “Residual properties of notched [0/90]4S AS4/PEEK composite laminates after fatigue and re-consolidation” Composites:Part B(33),pp.67-76.
[29] 張熙超, 1999,“ 碳纖維/聚醚醚酮複合材料積層板鑽孔及溫度效應之破壞機制與機械性質分析 ”, 國立中山大學機械所碩士論文.
[30] 曾育鍾, 2000, ” 中央鑽孔碳纖維/聚二醚酮複材積層板之高溫疲勞探討 ”, 國立中山大學機械所碩士論文.
[31] 蔡健民, 2003, ” 以奈米粉體強化之高性能高分子PEEK 製程與機械性質分析 ”, 國立中山大學材料科學所碩士論文
[32] 吳俊憲, 2004, “ 石墨纖維/聚醚醚酮奈米複材積層板之研製與機械性能探討 ”, 國立中山大學機電所碩士論文.
[33] 黃育信,2005,“奈米複材積層板承受高溫疲勞作用其機械性能之探討”, 國立中山大學機電所碩士論文.
[34] 李秉原, 2006, ”鎂合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性能探討” , 國立中山大學機電所碩士論文.
[35] 邱岩諺, 2007, ”中央鑽孔鎂合金/碳纖維/聚醚醚酮複材積層板之研製與機械性能探討” , 國立中山大學機電所碩士論文.
[36] 賴盈達, 2008, ”鋁合金/碳纖維/聚醚醚酮奈米複材積層板之研製與機械性能探討” , 國立中山大學機電所碩士論文.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top