|
[1] J. A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless electronics,” IEEE Pervasive Computing 4(1), 18-27 (2005). [2] S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, and P. K. Wright, “Improving power output for vibration-based energy scavengers,” IEEE Pervasive Computing 4(1), 28-36 (2005). [3] E. Mis, A. Dziedzic, T. Piasecki, J. Kita, and R. Moos, “Geometrical, electrical and stability properties of thick-film and LTCC microcapacitors,” Microelectronics International 25(2), 37-41 (2008). [4] M. Lahti and V. Lantto, “Passive RF band-pass filters in an LTCC module made by fine-line thick-film pastes,” J. European Ceramic Society 21(10-11), 1997-2000 (2001). [5] L. J. Golonka, “Technology and applications of low temperature cofired ceramic (LTCC) based sensors and microsystems,” Bull. Pol. Ac.: Tech. 54(2), 221-231 (2006). [6] A. C. Woerd, M. A. Bais, L. P. Jong, and A. Roermund, “A highly efficient micro-power converter between a solar cell and a rechargeable lithium-ion battery,” SPIE Conf. Smart Electronics MEMS 3328, 315-25 (1998). [7] J. N. Ross, “Optical power for sensor interfaces,” Meas. Sci. Technol. 3, 651-655 (1992). [8] S. B. Schaevitz, A. J. Franz, K. F. Jensen, and M. A. Schmidt, “A combustion-based MEMS thermoelectric power generator,” Proc. 11th Int. Conf. Solid-State Sensors Actuators, Transducers, Munich, Germany, 1A3-02 (2001). [9] T. Starner, “Human powered wearable computing,” IBM System J. 35(3-4), 618-629 (1996). [10] M. Marzencki, S. Basrour, B. Charlot, A. Grasso, M. Colin, and L.Valbin, “Design and fabrication of piezoelectric micro power generators for autonomous,” Microsystems Proc. Symp. Design, Test, Integration, Packaging, MEMS/MOEMS, Montreux, Switzerland, 299–302 (2005). [11] N. S. Shenck and J. A. Paradiso, “Energy scavenging with shoe-mounted piezoelectrics,” IEEE Micro. 21, 30–42 (2001). [12] M. Miyazaki, H. Tanaka, G. Ono, T. Nagano, N. Ohkubo, T. Kawahara, and K. Yano, “Electric-energy generation using variable-capacitive resonator for power-free LSI: efficiency analysis and fundamental experiment,” ISLPED, 193–8 (2003). [13] G. Despesse, T. Jager, J. Chaillout, J. Leger, A. Vassilev, S. Basrour, and B. Chalot, “Fabrication and characterisation of high damping electrostatic micro devices for vibration energy scavenging,” Proc. Design, Test, Integration, Packaging, MEMS and MOEMS, 386–90 (2005). [14] E. Koukharenko, M. J. Tudor, and S. P. Beeby, “Performance improvement of a vibration-powered electromagnetic generator by reduced silicon surface roughness,” Materials letters 62(4-5), 651-654 (2008). [15] D. P. Arnold, F. Herrault, I. Zana, P. Galle, J.-W. Park, S. Das, J. H. Lang, and M. G. Allen, “Design optimization of an 8-Watt, microscale, axial-flux, permanent-magnet generator,” J. Micromech. Microeng. 16 (9), S290–S296 (2006). [16] P. D. Mitcheson, E. K. Reilly, T. Toh1, P. K. Wright, and E. M. Yeatman, “Performance limits of the three MEMS inertial energy generator transduction types,” J. Micromech. Microeng. 17 211–216 (2007). [17] M. Ferrari, V. Ferrari, D. Marioli, and A. Taroni, “Modeling, fabrication and performance measurements of a piezoelectric energy converter for power harvesting in autonomous microsystems,” IEEE Trans. Instr. Meas. 55(6), (2006). [18] J. Yuan, T. Xie, X. Shan, and W. Chen, “Experimental study on a self-powered piezoelectric sensor under vibration environment,” Proc. 18th IEEE Int. Symp. Appl. Ferroelectrics (ISAF), 1-4 (2009). [19] S. Roundy, P. K. Wright, and J. Rabaey, “A study of low level vibrations as a power source for wireless sensor nodes,” Comput. Comm. 26, 1131–1144 (2003). [20] P. D. Mitcheson, P. Miao, B. H. Stark, E. M. Yeatman, A. S. Holmes, and T. C. Green, “MEMS electrostatic micropower generator for low frequency operation,” Sens. Actuators A 115, 523-529 (2004). [21] E. Koukharenko, M. J. Tudor, and S. P. Beeby, “Performance improvement of a vibration-powered electromagnetic generator by reduced silicon surface roughness,” Materials letters 62(4-5), 651-654 (2008). [22] C. B. Williams and R. B. Yates, “Analysis of a microelectric generator for microsystems,“ Sens. Actuators A 52, 8-11 (1995). [23] C. Shearwood and R. B. Yates, “Development of an electromagnetic microgenerator,” Electronics letters 23rd 33(22), 1883-1884 (1997). [24] D. Spreemann, D. Hoffmann, B. Folkmer, and Y. Manoli, “Numerical optimization approach for resonant electromagnetic vibration transducer design for random vibration,” J. Micromech. Microeng. 18, 104001–104010 (2008). [25] N. Fondevilla, C. Serre, A. Perez-Rodriguez, J. R. Morante, and J. Esteve, “Design and fabrication of Si technology microgenerators for vibrational energy scavenginh,” Proc. Spanish Conf. Electron Device (CDE), Santiago de Compostela, Spain, 262-265 (2009). [26] T. Galchev, H. Kim, and K. Najafi, “Non-resonant bi-stable frequency-increased power scavenger from low-frequency ambient vibration,” Proc. Intl. Solid-State Sens. Actuators Microsyst., Denver, Co, USA, 632–635 (2009). [27] M. S. M. Soliman and E. M. Abdel-Rahman, “A design procedure for wideband micropower generator,” J. Microelectromech. Syst. 18, 1288–1299 (2009). [28] L. K. Lagorce and O. Brand, “Magnetic microactuators based on polymer magnets,” IEEE J. Microelectromech. Syst. 8(1), 2-9 (1999). [29] M. El-hami, P. Glynne-Jones, N. M. White, M. Hill, S. Beeby, E. James, A. D. Brown, and J. N. Ross, “Design and fabrication of a new vibration-based electromechanical power generator,” Sens. Actuators A 92, 335-342 (2001). [30] T. Toriyama, S. Sugiyama, and K. Hashimoto, “Design of a resonant micro reciprocating engine for power generation,” Sens. Trans. J. 2, 9-12 (2003). [31] P. Glynne-Jones and N. M White, “An electromagnetic, vibration-powered generator for intelligent sensor systems,” Sens. Actuators A 110, 344–349 (2004). [32] E. P. James, M. J. Tudor, S. P. Beeby, N. R. Harris, P. Glynne-Jones, J. N. Ross, and N. M. White, “An investigation of self-powered systems for condition monitoring applications,” Sens. Actuators A 110, 171-176 (2004). [33] S. P. Beeby, M. J. Tudor, E. Koukharenko, N. M. White, T. O''Donnell, C. Saha, S. Kulkarni, and S. Roy, “Design and performance of a microelectromagnetic vibration powered generator,” Proc. 13th Intl. Conf. Soild-State Sens. Actuators and Microsyst. 1, 780-783 (2005). [34] E. Koukharenko, S. P. Beeby, M. J. Tudor, N. M. White, T. O’Donnell, C. Saha, S. Kulkarni, and S. Roy, “Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications,” Microsyst. Technol. 12, 1071-1077 (2006). [35] M. S. M. Soliman, E. F. El-Saadany, and R. R. Mansour, “Electromagnetic MEMS based micro-power generator,” Proc. Indus. Electronics, IEEE Intl. Symp. 4, 2747-2753 (2006). [36] C. R. Saha, T. O’Donnell, H. Loder, S. Beeby, and J. Todor, “Optimization of an electromagnetic energy harvesting device,” IEEE Trans. Magn. 42(10), 3509-3511 (2006). [37] S. Kulkarni, E. Koukharenko, J. Tudor, S. Beedy, T. O’Donnell, and Saibal Roy, “Fabrication and test of integrated micro-scale vibration based electromagnetic generator,” Proc. 14th Intl. Conf. Solid-State Sens. Actuators Microsyst., Lyon, France, 11-14, 879-882 (2007). [38] S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O. Donne, C. R. Saha, and S. Roy, “A micro electromagnetic generator for vibration energy harvesting,” J. Micromech. Microeng. 17, 1257-1265 (2007). [39] R. Torah, P. Glynne-Jones, M. Tudor, T. O’Donnell, S. Roy, and S. Beeby, “Self-powered autonomous wireless sensor node using vibration energy harvesting,” Meas. Sci. Technol. 19, 125202-125210 (2008). [40] I. Sari, T. Balkan, and H. Kulah, “A micro power generator with planar coils on parylene cantilevers,” Ph.D. Thesis, Research in Microelectron. Electronics (PRIME), 133-136 (2008). [41] S. Dwari and L. Parsa, “Low voltage energy harvesting systems using coil inductance of electromagnetic microgenerators,” Proc. 24th Appl. Power Electronics Conf. (APEC) and Exposition, 1145 – 1150 (2009). [42] I. Sari, T. Balkan, and H. Kulah, “An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique,” IEEE J. Microelectromech. Syst. 19(1), 14-27 (2010). [43] R. Amirtharajah and P. Chandrakasan, “Self-powered signal processing using vibration- base power generation,” IEEE J. Solid-State Circuits 33(5), 687-695 (1998). [44] X. Cao and Y. K. Lee, “Design and fabrication of mini vibration power generator system for micro sensor networks,” Proc. IEEE Intl. Conf. Info. Acquisition, Weihai, Shandong, China, 91-95 (2006). [45] L. Haodong and P. Pillay, “A linear generator powered from bridge vibrations for wireless sensors,” Proc. IEEE Industry Appl. Conf., 523–529 (2007). [46] L. Haodong and P. Pillay, “A methodology to design linear generators for energy conversion of ambient vibrations,” Proc. IEEE Industry Appl. Society (IAS) Annual Meeting, 1–8 (2008). [47] T. V. Buren and G. Troster, “Design and optimization of a liner vibration-driven electromagnetic micro-power generator,” Sens. Actuators A 135(2), 765-775 (2007). [48] E. Sazonov, H. Li, D. Curry, and P. Pilly, “Self-powered sensors for monitoring of highway bridges,” IEEE Sensors J. 9(11), 1422-1429 (2009). [49] W. J. Li, T. C. H. Ho, and G. M. H. Chan, “Infrared signal transmission by a laser-micromachined vibration-induced power generator,” Proc. 43rd IEEE Midwest Symp. Cir. and Syst., Lansing Mi, 236-239 (2000). [50] N. N. H. Ching, H. Y. Wong, W. J. Li, P. H. W. Leong, and Z. Wen, “A laser-micromachined multi-modal resonating power transducer for wireless sensing system,” Sens. Actuators A 97-98, 685-690 (2002). [51] J. M. H. Lee, S. C. L. Yuen, W. J. Li, and P. H. W. Leong, “Development of an AA size energy transducer with micro resonators,” Proc. Intl. Symp. Circ. and Syst. (ISCAS) 4, 876-879 (2003). [52] C. T. Pan, Y.M. Hwang, and H. L. Hu, “Fabrication and analysis of a magnetic self-powered microgenerator,” J. Magn. Magn. Mater. 304, 394-396 (2006). [53] P. H. Wang, X. H. Dai, D. M. Fang, and X. L. Zhao, “Design, fabrication and performance of a new vibration-based electromagnetic power generator,” Micro electronics J. 38 (2007). [54] S. Kulkarni, S. Roy, T. O''Donnell, S. Beeby, and J. Tudor, “Electromagnetic micro power generator on Silicon for wireless sensor nodes,” Proc. IEEE Intl. Magn. Conf. (INTERMAG), 317-317 (2006). [55] P. Constantinou, P. H. Mellor, and P. Wilcox, “A model of a magnetically sprung vibration generator for power harvesting applications,” Proc. IEEE Intl. Electric Mach. & Drives Conf. 1, 725–730 (2007). [56] Z. Hadas, M. Kluge, V. Singule, and C. Ondrusek, “Electromagnetic vibration power generator,” Proc. IEEE Intl. Sym. Diagn. Electric Mach. Power Electroics Drives (SDEMPED), 451–455 (2007). [57] Z. Hadas, J. Zouhar, V. Singule, and C. Ondrusek, “Design of energy harvesting generator base on rapid prototyping parts,” Proc. 13th Intl. Power Electrics Motion Control Conf. (EPE-PEMC), 1666-1669 (2008). [58] P. Glynne-Jones and N. M White, “Self-powered systems: a review of energy source,” Sens. Review 21(2), 91-97 (2001). [59] T. Sterken, K. Baert, C. Van-hoof, R. Puers, G. Borghs, and P. Fiorini, “Comparative modelling for vibration scavengers,” Proc. IEEE Sensors 3, 1249-1252 (2004). [60] P. D. Mitcheson, T. C. Green, E. M. Yeatman, and A. S. Holmes, “Architectures for vibration-driven micropower generator,” J. Microelectromech. Syst. 13(3), 429-440 (2004). [61] S. Ohashi and T. Matsuzuka, “Basic characteristics of the linear synchronous generator using mechanical vibration,” IEEE Trans. Magn. 41(10), 3829-3831 (2005). [62] N. G. Stephen, “On energy harvesting from ambient vibration,” J. Sound and Vibration 293, 409-425 (2006). [63] S. P. Beeby, M. J. Tudor, and N. M. White, “Energy harvesting vibration sources for microsystem applications,” Meas. Sci. Technol. 17, 175-195 (2006). [64] S. Cheng, N. Wang, and D. P. Arnold, “Modeling of magnetic vibrational energy harvesters using equivalent circuit representations,” J. Micromech. Microeng. 17, 2328-2335 (2007). [65] D. P. Arnold, “Review of microscale magnetic power generation,” IEEE Trans. Magn. 43(11), 3940-3951 (2007). [66] S. I. Kim, D. H. Lee, Y. P. Lee, Y. S. Chang, and M. C. Park, “Low frequency properties of micro power generator using power generator using a gold electroplated coil and magnet,” Current Appl. Phys. J. 8(2), 138-141 (2008). [67] Z. Wang, B. Wang, M. Wang, H. Zhang, and W. Huang, “Model and experimental study of permanent magnet vibration-to-electrical power generator,” Proc. IEEE Trans. Appl. Supercond. 99, 1-1 (2010). [68] W. T. Thomson, “Theory of vibration with application,” 1st ed., Prentice-Hall, Pub. Co., Santa Barbara, California (1972). [69] J. E. Shigley and C. R. Mischke, “Mechanical engineering design,” 4th ed., McGraw-Hill Book, Pub. Co., New York (1989). [70] W. D. Callister, “Materials science and engineering – An introduction,” 3rd ed., Jonh Wiley & Sons Inc., New York (1994). [71] K. H. Lee and H. L. Lee, “Lifetime prediction of structural ceramic dynamic fatigue,” J. Ceramic Proc. Research, 2(2), 61-66 (2001). [72] D. K. Cheng, “Field and wave electromagnetics,” 2nd ed., Addison-Wesley, Reading, Mass (1989). [73] C. D. Richard, “Introduction to electrical circuit,” 2nd ed., John Wiley & Sons, Inc. Pub. Co., New York (1993). [74] http://www.magtech.com.tw./chinese/03-re.htm [75] T. V. Buren, P. Lukowicz , and G. Troster, “Kinetic energy powered computing - an experimental feasibility study,” Proc. IEEE 7th Intl. Symp. Wearable Computers, White Plains, New York, USA, 22-24 (2003). [76] M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, J. J. Santiago-Aviles, "Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST)," Sens. Actuators A 89, 222-241 (2001). [77] http://www.shi-mechatronics.jp/en/products/laser/drill/index.shtml [78] http://www.hotshine.com/htm/index-c.htm [79] http://www.uff.com.tw/cubeshop/front/bin/home.phtml
|