(3.239.159.107) 您好!臺灣時間:2021/03/08 21:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂文隆
研究生(外文):Weng-Long Lu
論文名稱:應用低溫共燒陶瓷技術於振動電磁式微發電機之設計與製作
論文名稱(外文):Design and Fabrication on Vibration-Induced Electromagnetic Micro-Generators Using LTCC Technology
指導教授:黃永茂
指導教授(外文):Yeong-Maw Hwang
學位類別:博士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:147
中文關鍵詞:低溫共燒陶瓷感應電動勢電功率密度微感應器微機電系統振動感應多層微發電機
外文關鍵詞:LTCCMicro-inducerMicro-generatorVibration-inducedElectromotive forcePower densityMultilayerMEMS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:303
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文應用低溫共燒陶瓷(Low temperature co-fire ceramic, LTCC)技術於振動電磁式微發電機(Micro-generator)之設計與製作。低溫共燒陶瓷微製程技術具備製程簡單以及可多層化(Multilayer)堆疊之特殊優點,故製作之微感應器結構可包含多層化銀金屬微感應線圈與陶瓷螺旋微彈簧體。銀金屬具有高導電(低電阻)特性且結構經多層化處理,故有助於微發電機發電量之提昇。
本論文的研究內容主要分成三部分。首先為設計兩款不同構造的微發電機;磁性核心元件型(Magnetic core generator, MCG)及側邊磁鐵元件型(Sided-magnet generator, SMG)。依據其不同之結構建立微發電機振動的解析模式,探討其彈簧常數(Spring constant)與自然共振頻率(Natural resonant frequency)及支撐樑之彎曲應力(Bending stress)與疲勞壽命(Fatigue life),亦計算出螺旋微感應線圈之感應電壓(Voltage output)、輸出電流(Current output)、輸出電功率(Power output)與振盪頻率及振盪振幅之間的關係。
第二部分為介紹如何應用低溫共燒陶瓷技術,整合多層化銀金屬之微感應線圈與螺旋陶瓷之微彈簧結構,以及規劃微感應器之設計與製作。從其製作過程中得知,堆疊偏移量大小限制多層結構之總層數。從其製作之結果驗證,以低溫共燒陶瓷技術製作螺旋微感應器的可行性,並已控制陶瓷材料燒結之翹曲(Warpage)及收縮(Shrinkage)問題與多層結構之脫層(Delamination)及裂痕(Crack)等現象。
第三部分為建立量測系統,同時進行振動測試與發電實驗,並探討不同構造的微發電機之發電量狀況。藉由量測結果探討,微發電機之感應電壓、輸出電流、輸出電功率及電功率密度相對於感應線圈層數及磁鐵數目之變化趨勢、電磁耦合寄生阻尼係數與振動振幅及振動速度之間的關係、電磁耦合電感與輸出電流之間的關係、匹配電阻相對於輸出電功率之間的關係、以及不同製程批之間的差異性。
最後,比較輸出電功率的量測結果與解析值之間的差異。針對MCG型之微發電機,其解析值為0.88 mW,小於實驗值的1 mW約13.6%。針對SMG型之微發電機,其解析值為1.73 mW,大於量測值的1.56 mW約10.7%,藉此驗證理了解析模式之適用性。從量測結果證實,在頻率120 Hz與最大振幅0.03 mm條件下,MCG型之微發電機的感應電壓、輸出電流及電功率密度分別為25.19 mV、82.9 mA及2.36 mW/cm3。另外,在頻率69 Hz與最大振幅0.03 mm狀況下,SMG型之微發電機可產生44.5 mV感應電壓、83.1 mA輸出電流及2.17 mW/cm3電功率密度。整體看來,除了電功率密度之外,SMG型之各項發電性能略優於MCG型的裝置。相較之下,SMG型及MCG型之電功率密度皆可媲美文獻的相關結果。
This work presents design and fabrication technologies on vibration-induced electromagnetic micro-generators using LTCC (Low temperature co-fire ceramic) processes. LTCC fabrication with some special advantages has simplistically processes and multilayer stack procedure, resulting in a micro-inducer can consist of the multilayer silver (Ag) induction micro-coils and a helical ceramic micro-spring. Highly electrical conductible Ag and its multilayer micro-coil structures can enhance the power output of generators.
This work is composed of three parts. The first part describes the design of two kinds of micro-generator; a magnetic core generator (MCG) and sided-magnet generator (SMG). According to their respective structures, an analytical mode is also developed to investigate its resonant frequency and the spring constant of the micro-spring, as well as the bending stress and fatigue life of the supporting beam. The voltage output, current output and power output on the helical induction micro-coils, as well as the relationship of vibration amplitude versus vibration frequency in the vibrating system are calculated.
The second part introduces how to integrate the Ag multilayer induction micro-coils and the helical ceramic micro-spring using LTCC technique, and organize the design and fabrication of LTCC micro-inducers. From the fabrication procedures, it is known that a stacking error places a limit on the total numbers of micro-coils layer. The experimental results verify that the application of LTCC to the fabrication of micro-inducers is feasible, and that the phenomenon of plane warpage, volumetric shrinkage, layer delamination and surface crack of sintered ceramic structures has been fully controlled.
In the third part, measurement setup, vibrating tests and experiments on generating electricity are completed. The performances with different-structure devices are evaluated. Voltage output, current output and power output, as well as changing trends of power density with respect to the layer number of induction micro-coils and magnets are discussed. Relationship of the electrical parasitical damping coefficient versus the vibration amplitude and vibration velocity, relationship between the induced inductor and the current output, the power output depending on the electrical load resistance and differences between fabrication lots are investigated.
At last, comparisons between analytical and experimental power output are conduced. For MCG micro-generator, the analytical value is 0.88 mW, about 13.6% smaller than the experimental value of 1 mW. For SMG micro-generator, the analytical value is 1.73 mW, about 10.7% larger than the measured value of 1.56 mW. The analytical models are verified. In the MCG device, the experimental results show that a maximum voltage output of 25.19 mV, a current output of 82.9 mA and a power density of 2.36 mW/cm3 under 120 Hz frequency and 0.03-mm amplitude are obtained. In addition, when operated at 69 Hz vibration frequency and vibration amplitude of 0.03 mm, the experimental maximum voltage output, current output and power density of the SMG device are 44.5 mV, 83.1 mA and 2.17 mW/cm3, respectively. Except the power density, other electricity performances of SMG device are better than MCG. Apparently, the power density of MCG and SMG device presented by this study competes favorably with the results from other devices in the literature.
致謝.........................................................................................I
摘要........................................................................................II
Abstract....................................................................................IV
目錄........................................................................................VI
圖目錄......................................................................................IX
表目錄....................................................................................XIII
符號說明...................................................................................XIV
第一章、緒論.................................................................................1
1-1 前言...................................................................................1
1-2 微機電系統之微製程、微發電機之發電模式與微彈簧之種類...................................2
1-2-1 微製程之種類.......................................................................2
1-2-1-1 黃光微製程.....................................................................2
1-2-1-2 LIGA微製程.....................................................................3
1-2-1-3 低溫共燒陶瓷微製程.............................................................3
1-2-1-4 黃光及LIGA與低溫共燒陶瓷微製程之比較...........................................4
1-2-2 發電方式之種類與運作模式...........................................................5
1-2-3 振動微彈簧之種類與結構.............................................................8
1-3 文獻回顧...............................................................................9
1-3-1 薄膜式微彈簧之微發電機.............................................................9
1-3-2 懸臂樑式微彈簧之微發電機..........................................................11
1-3-3 柱狀式微彈簧之微發電機............................................................17
1-3-4 平面式微彈簧之微發電機............................................................18
1-3-5 磁力式微彈簧之微發電機............................................................20
1-3-6 其它相關形式之研究................................................................22
1-4 研究目的..............................................................................27
1-5 本文架構..............................................................................28
第二章、振動電磁式微發電機解析模式之構築....................................................30
2-1 振動電磁式微發電機之設計..............................................................30
2-1-1 磁性核心元件型之微發電機..........................................................30
2-1-2 側邊磁鐵元件型之微發電機..........................................................33
2-2 微振動結構體之解析模式................................................................34
2-2-1 振動理論模式之分析................................................................34
2-2-2 螺旋微彈簧結構的彈簧常數之分析....................................................39
2-2-3 螺旋微彈簧結構的自然共振頻率之分析................................................42
2-2-4 螺旋微彈簧支撐樑的彎曲應力之分析..................................................44
2-2-5 螺旋微彈簧支撐樑的疲勞壽命之分析..................................................48
2-2-6 螺旋微感應線圈的輸出電功率之計算..................................................50
2-3 磁場分佈之解析模式....................................................................59
2-3-1 有限元素分析模式之建立............................................................59
2-3-2 推導公式分析模式之建立............................................................64
2-4 各式參數對輸出電功率之影響評估........................................................70
2-4-1 振動頻率與振幅之評估..............................................................70
2-4-2 振動質量之評估....................................................................71
第三章、低溫共燒陶瓷微感應器之製作..........................................................73
3-1 陶瓷材料之特性........................................................................73
3-2 低溫共燒陶瓷微製程之特性..............................................................74
3-3 低溫共燒陶瓷微感應器之製作............................................................75
3-4 微感應器之多層導電線圈結構............................................................86
第四章、振動測試與發電實驗..................................................................89
4-1 量測系統建立..........................................................................89
4-2 量測結果與解析值之比較................................................................91
4-2-1 磁性核心元件型之微發電機..........................................................92
4-2-1-1 磁性核心元件型之測試條件......................................................92
4-2-1-2 磁性核心元件型之振動振幅與振動速度............................................93
4-2-1-3 磁性核心元件型之感應電壓與輸出電流............................................96
4-2-1-4 磁性核心元件型之輸出電功率與電功率密度........................................99
4-2-2 側邊磁鐵元件型之微發電機.........................................................103
4-2-2-1 側邊磁鐵元件型之測試條件.....................................................103
4-2-2-2 側邊磁鐵元件型之振動振幅與振動速度...........................................104
4-2-2-3 側邊磁鐵元件型之感應電壓與輸出電流...........................................106
4-2-2-4 側邊磁鐵元件型之輸出電功率與電功率密度.......................................109
4-2-3 磁性核心元件型及側邊磁鐵元件型之比較.............................................113
4-2-4 相關文獻結果與MCG型及SMG型之比較.................................................116
第五章、結論...............................................................................119
5-1 成果摘要.............................................................................119
5-1-1 微發電機之設計、振動模式與磁場分佈之分析.........................................119
5-1-2 低溫共燒陶瓷微感應器之製作.......................................................120
5-1-3 量測與解析結果之討論.............................................................121
5-2 未來之研究課題.......................................................................122
參考文獻...................................................................................123
[1] J. A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless electronics,” IEEE Pervasive Computing 4(1), 18-27 (2005).
[2] S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, B. Otis, J. M. Rabaey, and P. K. Wright, “Improving power output for vibration-based energy scavengers,” IEEE Pervasive Computing 4(1), 28-36 (2005).
[3] E. Mis, A. Dziedzic, T. Piasecki, J. Kita, and R. Moos, “Geometrical, electrical and stability properties of thick-film and LTCC microcapacitors,” Microelectronics International 25(2), 37-41 (2008).
[4] M. Lahti and V. Lantto, “Passive RF band-pass filters in an LTCC module made by fine-line thick-film pastes,” J. European Ceramic Society 21(10-11), 1997-2000 (2001).
[5] L. J. Golonka, “Technology and applications of low temperature cofired ceramic (LTCC) based sensors and microsystems,” Bull. Pol. Ac.: Tech. 54(2), 221-231 (2006).
[6] A. C. Woerd, M. A. Bais, L. P. Jong, and A. Roermund, “A highly efficient micro-power converter between a solar cell and a rechargeable lithium-ion battery,” SPIE Conf. Smart Electronics MEMS 3328, 315-25 (1998).
[7] J. N. Ross, “Optical power for sensor interfaces,” Meas. Sci. Technol. 3, 651-655 (1992).
[8] S. B. Schaevitz, A. J. Franz, K. F. Jensen, and M. A. Schmidt, “A combustion-based MEMS thermoelectric power generator,” Proc. 11th Int. Conf. Solid-State Sensors Actuators, Transducers, Munich, Germany, 1A3-02 (2001).
[9] T. Starner, “Human powered wearable computing,” IBM System J. 35(3-4), 618-629 (1996).
[10] M. Marzencki, S. Basrour, B. Charlot, A. Grasso, M. Colin, and L.Valbin, “Design and fabrication of piezoelectric micro power generators for autonomous,” Microsystems Proc. Symp. Design, Test, Integration, Packaging, MEMS/MOEMS, Montreux, Switzerland, 299–302 (2005).
[11] N. S. Shenck and J. A. Paradiso, “Energy scavenging with shoe-mounted piezoelectrics,” IEEE Micro. 21, 30–42 (2001).
[12] M. Miyazaki, H. Tanaka, G. Ono, T. Nagano, N. Ohkubo, T. Kawahara, and K. Yano, “Electric-energy generation using variable-capacitive resonator for power-free LSI: efficiency analysis and fundamental experiment,” ISLPED, 193–8 (2003).
[13] G. Despesse, T. Jager, J. Chaillout, J. Leger, A. Vassilev, S. Basrour, and B. Chalot, “Fabrication and characterisation of high damping electrostatic micro devices for vibration energy scavenging,” Proc. Design, Test, Integration, Packaging, MEMS and MOEMS, 386–90 (2005).
[14] E. Koukharenko, M. J. Tudor, and S. P. Beeby, “Performance improvement of a vibration-powered electromagnetic generator by reduced silicon surface roughness,” Materials letters 62(4-5), 651-654 (2008).
[15] D. P. Arnold, F. Herrault, I. Zana, P. Galle, J.-W. Park, S. Das, J. H. Lang, and M. G. Allen, “Design optimization of an 8-Watt, microscale, axial-flux, permanent-magnet generator,” J. Micromech. Microeng. 16 (9), S290–S296 (2006).
[16] P. D. Mitcheson, E. K. Reilly, T. Toh1, P. K. Wright, and E. M. Yeatman, “Performance limits of the three MEMS inertial energy generator transduction types,” J. Micromech. Microeng. 17 211–216 (2007).
[17] M. Ferrari, V. Ferrari, D. Marioli, and A. Taroni, “Modeling, fabrication and performance measurements of a piezoelectric energy converter for power harvesting in autonomous microsystems,” IEEE Trans. Instr. Meas. 55(6), (2006).
[18] J. Yuan, T. Xie, X. Shan, and W. Chen, “Experimental study on a self-powered piezoelectric sensor under vibration environment,” Proc. 18th IEEE Int. Symp. Appl. Ferroelectrics (ISAF), 1-4 (2009).
[19] S. Roundy, P. K. Wright, and J. Rabaey, “A study of low level vibrations as a power source for wireless sensor nodes,” Comput. Comm. 26, 1131–1144 (2003).
[20] P. D. Mitcheson, P. Miao, B. H. Stark, E. M. Yeatman, A. S. Holmes, and T. C. Green, “MEMS electrostatic micropower generator for low frequency operation,” Sens. Actuators A 115, 523-529 (2004).
[21] E. Koukharenko, M. J. Tudor, and S. P. Beeby, “Performance improvement of a vibration-powered electromagnetic generator by reduced silicon surface roughness,” Materials letters 62(4-5), 651-654 (2008).
[22] C. B. Williams and R. B. Yates, “Analysis of a microelectric generator for microsystems,“ Sens. Actuators A 52, 8-11 (1995).
[23] C. Shearwood and R. B. Yates, “Development of an electromagnetic microgenerator,” Electronics letters 23rd 33(22), 1883-1884 (1997).
[24] D. Spreemann, D. Hoffmann, B. Folkmer, and Y. Manoli, “Numerical optimization approach for resonant electromagnetic vibration transducer design for random vibration,” J. Micromech. Microeng. 18, 104001–104010 (2008).
[25] N. Fondevilla, C. Serre, A. Perez-Rodriguez, J. R. Morante, and J. Esteve, “Design and fabrication of Si technology microgenerators for vibrational energy scavenginh,” Proc. Spanish Conf. Electron Device (CDE), Santiago de Compostela, Spain, 262-265 (2009).
[26] T. Galchev, H. Kim, and K. Najafi, “Non-resonant bi-stable frequency-increased power scavenger from low-frequency ambient vibration,” Proc. Intl. Solid-State Sens. Actuators Microsyst., Denver, Co, USA, 632–635 (2009).
[27] M. S. M. Soliman and E. M. Abdel-Rahman, “A design procedure for wideband micropower generator,” J. Microelectromech. Syst. 18, 1288–1299 (2009).
[28] L. K. Lagorce and O. Brand, “Magnetic microactuators based on polymer magnets,” IEEE J. Microelectromech. Syst. 8(1), 2-9 (1999).
[29] M. El-hami, P. Glynne-Jones, N. M. White, M. Hill, S. Beeby, E. James, A. D. Brown, and J. N. Ross, “Design and fabrication of a new vibration-based electromechanical power generator,” Sens. Actuators A 92, 335-342 (2001).
[30] T. Toriyama, S. Sugiyama, and K. Hashimoto, “Design of a resonant micro reciprocating engine for power generation,” Sens. Trans. J. 2, 9-12 (2003).
[31] P. Glynne-Jones and N. M White, “An electromagnetic, vibration-powered generator for intelligent sensor systems,” Sens. Actuators A 110, 344–349 (2004).
[32] E. P. James, M. J. Tudor, S. P. Beeby, N. R. Harris, P. Glynne-Jones, J. N. Ross, and N. M. White, “An investigation of self-powered systems for condition monitoring applications,” Sens. Actuators A 110, 171-176 (2004).
[33] S. P. Beeby, M. J. Tudor, E. Koukharenko, N. M. White, T. O''Donnell, C. Saha, S. Kulkarni, and S. Roy, “Design and performance of a microelectromagnetic vibration powered generator,” Proc. 13th Intl. Conf. Soild-State Sens. Actuators and Microsyst. 1, 780-783 (2005).
[34] E. Koukharenko, S. P. Beeby, M. J. Tudor, N. M. White, T. O’Donnell, C. Saha, S. Kulkarni, and S. Roy, “Microelectromechanical systems vibration powered electromagnetic generator for wireless sensor applications,” Microsyst. Technol. 12, 1071-1077 (2006).
[35] M. S. M. Soliman, E. F. El-Saadany, and R. R. Mansour, “Electromagnetic MEMS based micro-power generator,” Proc. Indus. Electronics, IEEE Intl. Symp. 4, 2747-2753 (2006).
[36] C. R. Saha, T. O’Donnell, H. Loder, S. Beeby, and J. Todor, “Optimization of an electromagnetic energy harvesting device,” IEEE Trans. Magn. 42(10), 3509-3511 (2006).
[37] S. Kulkarni, E. Koukharenko, J. Tudor, S. Beedy, T. O’Donnell, and Saibal Roy, “Fabrication and test of integrated micro-scale vibration based electromagnetic generator,” Proc. 14th Intl. Conf. Solid-State Sens. Actuators Microsyst., Lyon, France, 11-14, 879-882 (2007).
[38] S. P. Beeby, R. N. Torah, M. J. Tudor, P. Glynne-Jones, T. O. Donne, C. R. Saha, and S. Roy, “A micro electromagnetic generator for vibration energy harvesting,” J. Micromech. Microeng. 17, 1257-1265 (2007).
[39] R. Torah, P. Glynne-Jones, M. Tudor, T. O’Donnell, S. Roy, and S. Beeby, “Self-powered autonomous wireless sensor node using vibration energy harvesting,” Meas. Sci. Technol. 19, 125202-125210 (2008).
[40] I. Sari, T. Balkan, and H. Kulah, “A micro power generator with planar coils on parylene cantilevers,” Ph.D. Thesis, Research in Microelectron. Electronics (PRIME), 133-136 (2008).
[41] S. Dwari and L. Parsa, “Low voltage energy harvesting systems using coil inductance of electromagnetic microgenerators,” Proc. 24th Appl. Power Electronics Conf. (APEC) and Exposition, 1145 – 1150 (2009).
[42] I. Sari, T. Balkan, and H. Kulah, “An electromagnetic micro power generator for low-frequency environmental vibrations based on the frequency upconversion technique,” IEEE J. Microelectromech. Syst. 19(1), 14-27 (2010).
[43] R. Amirtharajah and P. Chandrakasan, “Self-powered signal processing using vibration- base power generation,” IEEE J. Solid-State Circuits 33(5), 687-695 (1998).
[44] X. Cao and Y. K. Lee, “Design and fabrication of mini vibration power generator system for micro sensor networks,” Proc. IEEE Intl. Conf. Info. Acquisition, Weihai, Shandong, China, 91-95 (2006).
[45] L. Haodong and P. Pillay, “A linear generator powered from bridge vibrations for wireless sensors,” Proc. IEEE Industry Appl. Conf., 523–529 (2007).
[46] L. Haodong and P. Pillay, “A methodology to design linear generators for energy conversion of ambient vibrations,” Proc. IEEE Industry Appl. Society (IAS) Annual Meeting, 1–8 (2008).
[47] T. V. Buren and G. Troster, “Design and optimization of a liner vibration-driven electromagnetic micro-power generator,” Sens. Actuators A 135(2), 765-775 (2007).
[48] E. Sazonov, H. Li, D. Curry, and P. Pilly, “Self-powered sensors for monitoring of highway bridges,” IEEE Sensors J. 9(11), 1422-1429 (2009).
[49] W. J. Li, T. C. H. Ho, and G. M. H. Chan, “Infrared signal transmission by a laser-micromachined vibration-induced power generator,” Proc. 43rd IEEE Midwest Symp. Cir. and Syst., Lansing Mi, 236-239 (2000).
[50] N. N. H. Ching, H. Y. Wong, W. J. Li, P. H. W. Leong, and Z. Wen, “A laser-micromachined multi-modal resonating power transducer for wireless sensing system,” Sens. Actuators A 97-98, 685-690 (2002).
[51] J. M. H. Lee, S. C. L. Yuen, W. J. Li, and P. H. W. Leong, “Development of an AA size energy transducer with micro resonators,” Proc. Intl. Symp. Circ. and Syst. (ISCAS) 4, 876-879 (2003).
[52] C. T. Pan, Y.M. Hwang, and H. L. Hu, “Fabrication and analysis of a magnetic self-powered microgenerator,” J. Magn. Magn. Mater. 304, 394-396 (2006).
[53] P. H. Wang, X. H. Dai, D. M. Fang, and X. L. Zhao, “Design, fabrication and performance of a new vibration-based electromagnetic power generator,” Micro electronics J. 38 (2007).
[54] S. Kulkarni, S. Roy, T. O''Donnell, S. Beeby, and J. Tudor, “Electromagnetic micro power generator on Silicon for wireless sensor nodes,” Proc. IEEE Intl. Magn. Conf. (INTERMAG), 317-317 (2006).
[55] P. Constantinou, P. H. Mellor, and P. Wilcox, “A model of a magnetically sprung vibration generator for power harvesting applications,” Proc. IEEE Intl. Electric Mach. & Drives Conf. 1, 725–730 (2007).
[56] Z. Hadas, M. Kluge, V. Singule, and C. Ondrusek, “Electromagnetic vibration power generator,” Proc. IEEE Intl. Sym. Diagn. Electric Mach. Power Electroics Drives (SDEMPED), 451–455 (2007).
[57] Z. Hadas, J. Zouhar, V. Singule, and C. Ondrusek, “Design of energy harvesting generator base on rapid prototyping parts,” Proc. 13th Intl. Power Electrics Motion Control Conf. (EPE-PEMC), 1666-1669 (2008).
[58] P. Glynne-Jones and N. M White, “Self-powered systems: a review of energy source,” Sens. Review 21(2), 91-97 (2001).
[59] T. Sterken, K. Baert, C. Van-hoof, R. Puers, G. Borghs, and P. Fiorini, “Comparative modelling for vibration scavengers,” Proc. IEEE Sensors 3, 1249-1252 (2004).
[60] P. D. Mitcheson, T. C. Green, E. M. Yeatman, and A. S. Holmes, “Architectures for vibration-driven micropower generator,” J. Microelectromech. Syst. 13(3), 429-440 (2004).
[61] S. Ohashi and T. Matsuzuka, “Basic characteristics of the linear synchronous generator using mechanical vibration,” IEEE Trans. Magn. 41(10), 3829-3831 (2005).
[62] N. G. Stephen, “On energy harvesting from ambient vibration,” J. Sound and Vibration 293, 409-425 (2006).
[63] S. P. Beeby, M. J. Tudor, and N. M. White, “Energy harvesting vibration sources for microsystem applications,” Meas. Sci. Technol. 17, 175-195 (2006).
[64] S. Cheng, N. Wang, and D. P. Arnold, “Modeling of magnetic vibrational energy harvesters using equivalent circuit representations,” J. Micromech. Microeng. 17, 2328-2335 (2007).
[65] D. P. Arnold, “Review of microscale magnetic power generation,” IEEE Trans. Magn. 43(11), 3940-3951 (2007).
[66] S. I. Kim, D. H. Lee, Y. P. Lee, Y. S. Chang, and M. C. Park, “Low frequency properties of micro power generator using power generator using a gold electroplated coil and magnet,” Current Appl. Phys. J. 8(2), 138-141 (2008).
[67] Z. Wang, B. Wang, M. Wang, H. Zhang, and W. Huang, “Model and experimental study of permanent magnet vibration-to-electrical power generator,” Proc. IEEE Trans. Appl. Supercond. 99, 1-1 (2010).
[68] W. T. Thomson, “Theory of vibration with application,” 1st ed., Prentice-Hall, Pub. Co., Santa Barbara, California (1972).
[69] J. E. Shigley and C. R. Mischke, “Mechanical engineering design,” 4th ed., McGraw-Hill Book, Pub. Co., New York (1989).
[70] W. D. Callister, “Materials science and engineering – An introduction,” 3rd ed., Jonh Wiley & Sons Inc., New York (1994).
[71] K. H. Lee and H. L. Lee, “Lifetime prediction of structural ceramic dynamic fatigue,” J. Ceramic Proc. Research, 2(2), 61-66 (2001).
[72] D. K. Cheng, “Field and wave electromagnetics,” 2nd ed., Addison-Wesley, Reading, Mass (1989).
[73] C. D. Richard, “Introduction to electrical circuit,” 2nd ed., John Wiley & Sons, Inc. Pub. Co., New York (1993).
[74] http://www.magtech.com.tw./chinese/03-re.htm
[75] T. V. Buren, P. Lukowicz , and G. Troster, “Kinetic energy powered computing - an experimental feasibility study,” Proc. IEEE 7th Intl. Symp. Wearable Computers, White Plains, New York, USA, 22-24 (2003).
[76] M. R. Gongora-Rubio, P. Espinoza-Vallejos, L. Sola-Laguna, J. J. Santiago-Aviles, "Overview of low temperature co-fired ceramics tape technology for meso-system technology (MsST)," Sens. Actuators A 89, 222-241 (2001).
[77] http://www.shi-mechatronics.jp/en/products/laser/drill/index.shtml
[78] http://www.hotshine.com/htm/index-c.htm
[79] http://www.uff.com.tw/cubeshop/front/bin/home.phtml
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔