(3.238.186.43) 您好!臺灣時間:2021/02/28 21:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳立崇
研究生(外文):Li-chong Chen
論文名稱:微型質子交換膜燃料電池螺栓組裝方式對其流道板接觸壓力與變形之影響
論文名稱(外文):Effect of Bolts Assembly on the Deformation and Pressure Distribution of Flow-Channel Plates in Micro-PEMFC
指導教授:錢志回
指導教授(外文):Chi-Hui Chien
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:139
中文關鍵詞:流道板微型質子交換膜燃料電池氣體擴散層均勻度螺栓鎖緊順序
外文關鍵詞:Micro-PEMFCGas diffusion layersBolts locking sequenceUniformityFlow-channel plates
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一般質子交換膜燃料電池之組裝方式為利用數個螺栓鎖緊組裝,但此種組裝方式的燃料電池,會因為其單點施力於上下兩邊,造成燃料電池內部的結構所受到的壓力無法均勻分佈,進而造成流道板之不均勻變形,此現象容易使反應氣體從沒有密合的縫隙流出,不僅會使燃料電池效率下降,氣體的流出也會造成危險,且若燃料電池之尺寸愈小,影響可能愈嚴重。
本研究主要目的為以有限元素法進行數值模擬,藉由建構之3-D模型,探討當一微型質子交換膜燃料電池乃是在電池之上下兩端分別用三個螺栓鎖緊組裝時,螺栓鎖緊順序對此燃料電池之流道板變形和壓力分佈及氣體擴散層孔隙率之影響。模擬結果顯示,先鎖中間螺栓的鎖緊模式其對應之流道上的翹曲度、變形均勻度、氣體擴散層的孔隙率均勻度和流道上的Von Mises等效應力均勻度都比先鎖角落螺栓的鎖緊模式來得優異;且在先鎖中間螺栓的鎖緊模式中,模擬結果顯示,若燃料電池是用三對螺栓(上下兩端各三個)來鎖緊且採取對邊鎖的方式,以第一對螺栓中,先鎖之螺栓與第二、三對先鎖之螺栓位於燃料電池之不同邊的鎖緊模式為較佳的鎖緊順序。

In general, a PEMFC was assembled by using a number of locked bolts. But this assembly will cause concentrated loads existed on the upper and lower portions of the end plates, so that the pressure distributed non-uniformly at the internal structures in the PEMFC and thus causing uneven distributed deformations of flow-channel plates. This phenomenon may lead to the leak of reaction gas, and causing not only the decrease of the efficiency of PEMFC, but also the increase of the dangerous. If the fuel cell size getting smaller, the influence may be more severely.
The main aim of this study is to simulate the response of a micro-PEMFC numerically by utilizing a 3-D FEM model while the micro-PEMFC was assembled by three pairs of bolts along the upper and lower portions, respectively, of the end plates. The effects of different bolts locking sequences on the deformation and pressure distributions at flow-channel plates and on the porosity of gas diffusion layers in the micro-PEMFC were investigated. The simulated results showed that if one locked the middle bolt either on the upper or lower portion first, then the obtained uniformities of warpage, deformation, von Mises stress and porosity were superior than the corresponding obtained results if one locked either one of the four corner bolts first. Also, among the three pairs of bolts used for assembling the cell, the first locking bolt of the first pair of locking bolts and the first locking bolt of the rest of two pairs of locking bolts were suggested on the reverse portions of the end plates.

目錄 I
表目錄 IV
圖目錄 VI
符號表 IX
摘要 XI
Abstract XII
第一章 緒論 1
1.1前言 1
1.2 燃料電池的分類 1
1.3 研究動機與目標 4
1.4 文獻回顧 5
1.4.1 燃料電池分析 5
1.4.2 燃料電池組裝方式與組裝壓力模擬 7
1.4.3燃料電池組裝壓力對效率之影響 9
1.4.4燃料電池組裝壓力之設計 12
1.5 本文架構 14
第二章 研究方法 22
2.1 有限元素法 22
2.2 微型質子交換膜燃料電池模型 24
2.2.1燃料電池模型尺寸、材料性質 24
2.2.2左右側流道板的定義和結構差異 25
2.3 網格收斂性 26
2.3.1網格的建立[34] 27
2.3.2 模型的收斂性 28
2.4 各式模擬條件之設定 30
2.4.1假設條件 30
2.4.2拘束條件 30
2.4.3 黏合元素與接觸元素 33
2.4.4摩擦係數對模擬的影響 35
2.4.5螺栓鎖緊壓力 35
2.5負載施加方式 36
第三章 分析方法 53
3.1流道翹曲度的定義 54
3.2變形均勻度的定義 55
3.3氣體擴散層孔隙率的計算 56
3.4 Von Mises等效應力均勻度的定義 57
第四章 結果與討論 61
4.1模擬驗證 61
4.2不同鎖緊順序的比較 64
4.2.1不同鎖緊順序對流道翹曲度之影響 65
4.2.2不同鎖緊順序對流道變形均勻度之影響 65
4.2.3不同鎖緊順序對氣體擴散層的孔隙率均勻度之影響 69
4.2.4不同鎖緊順序對流道Von Mises等效應力均勻度之影響 70
4.3先鎖中間螺栓的不同鎖緊順序之分析和比較 71
4.3.1四種鎖緊模式中所有鎖緊順序之分析 72
4.3.2四種鎖緊模式對流道翹曲度之影響 73
4.3.3四種鎖緊模式對流道變形均勻度之影響 74
4.3.4四種鎖緊模式對氣體擴散層孔隙率均勻度之影響 76
4.3.5四種鎖緊模式對流道Von Mises等效應力均勻度之影響 77
4.3.6小結 78
第五章 結論與未來展望 116
5.1結論 116
5.2未來展望 117
參考文獻 119


參考文獻
[1] 衣寶廉,燃料電池-原理與應用,五南圖書股份有限公司,台北,台灣,2005
[2] 黃鎮江,燃料電池,全華圖書股份有限公司,台北,台灣,2007
[3] 王建義,圖解燃料電池百科,全華圖書股份有限公司,台北,台灣,2004
[4] J. S. Kuo, “Design and microfabrications for micro PEMFCs”, Master Thesis, Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, 2004
[5] D. Singh, D. M. Lu and N. Djilali, “A two-dimensional analysis of mass transport in proton exchange membrane fuel cells”, Journal of Engineering Science, Vol. 37, Iss.4, pp.431-452, 1999
[6] H. Dohle, A. A. Kornyshev, A. A. Kulikovsky, J. Megel and D. Stolten, “The current voltage plot of PEM fuel cell with long feed channels”, Electrochemistry Communications, Vol. 3, Iss.2, pp.73-80, 2001
[7] C. H. Chien, Y. S. Shih, S. S. Hsieh, H. H. Tsai, Y. L. Huang and C. W. Lin, “The Effects of Variations of Flow Field and Geometry of Micro-Channel on the Cracked Ag-SU8 Interface in a Micro-PEMFC”, Journal of the Chinese Society of Mechanical Engineers, Vol.28, No.4, pp.357-365, 2007
[8] C. H. Chien, Y. L. Huang, W. F. Chen, C. W. Lin and S. C. Li, “3-Dimensional Numerical Stress Analysis around a Micro-Channel Wall Crack Tip in a Micro-PEMFC”, The〖31〗^stNational Conference on Theoretical and Applied Mechanics, Kaohsiung, Taiwan, December 21-22, 2007
[9] J. H. Jang, W. M. Yan, H. Y. Li and W. C. Tsai, “Three-dimensional numerical study on cell performance and transport phenomena of PEM fuel cell with conventional flow fields”, Journal of Hydrogen Energy, Vol. 33, Iss.1, pp.156-164, 2008
[10] S. W. Perng and H. W. Wu, “Effects of internal flow modification on the cell performance enhancement of a PEM fuel cell”, Journal of Power Sources, Vol. 175, Iss.2, pp806-816, 2008
[11] H. N. Yu, S. S. Kim, J. D. Suh and D. G. Lee, “Axiomatic design of the sandwich composite endplate for PEMFC in fuel cell vehicles”, Composite Structures, Vol. 92, Iss.6, pp.1504-1511, 2010
[12] H. S. Chu, C. Yeh and F. Chen, “Effects of porosity change of gas diffuser on performance of proton exchange membrane fuel cell”, Journal of Power Sources, Vol. 123, Iss.1, pp.1-9, 2003
[13] S. J. Lee, C. D. Hsu and C. H. Huang, “Analyses of the fuel cell stack assembly pressure”, Journal of Power Sources, Vol. 145, Iss.2, pp.353-361, 2005
[14] P. Zhou , C. W. Wu and G. J. Ma , “Contact resistance prediction and structure optimization of bipolar plates”, Journal of Power Sources, Vol. 159, Iss.2, pp. 1115-1122 , 2006
[15] C. H. Chien, S. C. Li, W. T. Hsu and C. W. Lin, “Effect of Bolt Locking Sequence on Flow-Channel Plates in Micro-PEMFC”, Sixth International Fuel Cell Science, Engineering and Technology Conference, Denver, Colorado, USA, June 16-18, 2008
[16] G. G. Scherer, “Interfacial aspects in the development of polymer electrolyte fuel cells”, Solid State Ionics, Vol. 94, Iss.1-4, pp.249-257, 1997
[17] W. K. Lee, C. H. Ho, J. W. Van Zee and M. Murthy, “The effects of compression and gas diffusion layers on the performance of a PEM fuel cell”, Journal of Power Sources, Vol. 84, Iss.1, pp. 45-51, 1999
[18] Toray Industries, Tokyo 103, Japan, http://www.toray.co.jp/; 2010/06/02
[19] E-TEK, Natick, MA, USA, http://www.etek-inc.com/home.php; 2010/06/02
[20] W. L. Gore & Associates, Elkton, MD, USA, http://tw.search.yahoo.com/search?fr=yfp&ei=UTF-8&p=W.L.+Gore+%26+Associates; 2010/06/02
[21] J. Nordlund, “A model for the porous direct methanol fuel cells anode”, Journal of Electrochem Society, Vol. 149, Iss.9, pp.1107-1113, 2002
[22] 郭寶仁,燃料電池複合材料雙極板研發及性能之研究,碩士論文,國立中央大學機械工程學系,中壢,台灣,2005
[23] P. Zhou , C. W. Wu and G. J. Ma , “Influence of clamping force on the performance of PEMFCs”, Journal of Power Sources, Vol. 163, Iss.2, pp. 874-881, 2007
[24] W. R. Chang, J. J. Hwang, F. B. Weng, S. H. Chan, “Effect of clamping pressure on the performance of a PEM fuel cell”, Journal of Power Sources, Vol. 166, Iss.1, pp.149-154, 2007
[25] S. Asghari, M. H. Shahsamandi, M. R. Ashraf Khorasani, “Design and manufacturing of end plates of a 5 kW PEM fuel cell”, Journal of Hydrogen Energy, In Press, Available online 2010/04/08
[26] B. Zhang, X. Wang and Y. Song, “Pressurized endplates for uniform pressure distributions in PEM fuel cells”, Proceedings of the First International Conference on Fuel Cell Development and Deployment, Storrs, Connecticut, USA, 2004
[27] J. Ge, A. Higier and H. Liu, “Effect of gas diffusion layer compression on PEM fuel cell performance”, Journal of Power Sources, Vol. 159, Iss.2, pp.922-927, 2006
[28] C. Y. Wen, Y. S. Lin and C. H. Lu, “Experimental study of clamping effects on the performances of a single proton exchange membrane fuel cell and a 10-cell stack”, Journal of Power Sources, Vol. 192, Iss.2, pp.475-485, 2009
[29] H. N. Yu, S. S. Kim, J. D. Suh and D. G. Lee, “Composite endplates with pre-curvature for PEMFC (polymer electrolyte membrane fuel cell) ”, Composite Structures, Vol. 92, Iss.6, pp.1498-1503, 2010
[30] 李輝煌,ANSYS工程分析-基礎與觀念,高立圖書股份有限公司,台北,台灣,2005
[31] http: //www.engineeringtoolbox.com/young-modulus-d_417.html; 2009/05/15
[32] http://www.engineeringtoolbox.com/poissons-ratio-d_1224.html; 2009/05/15
[33] http://www.matweb.com/search/QuickText.aspx?SearchText=PM; 2009/05/15
[34] 陳精一,ANSYS7.0電腦輔助工程實務分析,全華科技圖書有限公司,台北,台灣,2004
[35] ANSYS, Inc., Release 11.0 Documentation for ANSYS, Chapter 7.3. Mesh Control, 2009/05/18
[36] ANSYS, Inc., Release 11.0 Documentation for ANSYS, Chapter 5.4. Sculpting Your Model with Boolean Operation, 2010/05/18
[37] ANSYS, Inc., Release 11.0 Documentation for ANSYS, Element Reference: Targe170, 2009/05/18
[38] ANSYS, Inc., Release 11.0 Documentation for ANSYS, Element Reference: Conta174, 2009/05/18
[39] C. H. Chien, C. W. Lin and S. C. Li, “Experimental study of assembly contact pressure of micro-fuel cell”, SEM XI International Congress & Exposition on Experiment and Applied Mechanics, Orlando, Florida, USA, 2008/06/02-05

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔