|
[1] Rothon, R.N., “Mineral fillers in thermoplastics:filler manufacture and characterisation”, Adv. Polym. Sci., Vol.139, pp.67 .(1999).
[2] Liang, J.Z., “Tensile, flow, and thermal properties of CaCO3-filled LDPE/LLDPE composites”, J. Appl. Polym. Sci., Vpl. 104, pp.1692. (2007).
[3] Zhang, Y.M., et al., “Effect of carbon black and silica fillers in elastomer blends”, Macromolecules, Vol.34, pp.7056. (2001).
[4] Bodor, G., “Structural investigation of polymers”, Ellis Hoewood, New York, (1991).
[5] Attwood, T.E., Dawson, P.C., Freeman, J.L., Hoy, L.R.J., Rose, J. B., Staniland, P.A., “Synthesis and properties of polyaryletherketones”, Polymer, Vol. 22, pp.1096. (1981).
[6] Burris, L.B., Sawyer, W.G., “Tribological behavior of PEEK components with compositionally graded PEEK/PTFE surfaces”, Wear, Vol. 262, pp. 220. (2007). [7] Wenz, LM., Merritt, K., Brown, SA., Moet, A., Steffee, AD., “In vitro biocompatibility of polyetheretherketone and polysulfone composites”, J Biomed Mater Res., Vol. 24, pp.207. (1990).
[8] Katzer A., Marquardt, H., Westendorf, J., Wening, JV., Von Foerster, G., “Polyetheretherketone –cytotoxicity and mutagenicity in vitro”, Biomaterials, Vol. 23, pp. 1749. (2002).
[9] Evans, SL., Gregson, PJ., “Composite technology in load-bearing orthopaedic implants”,Biomaterials, Vol.19, pp.1329. (1998).
[10] Krishnakumar, S., “Fiber metal laminates : the synthesis of metals and composites”, Mater Manuf Process,Vol.9,pp.295.(1994).
[11] Sandler, J., Werner, P., Shaffer, M.S.P., Demchuk, V., Altstadt, V., Windle, A.H., “Carbon-nanofibre-reinforced poly(ether ether ketone) composites”, Composites Part a-Applied Science and Manufacturing, Vol.33, pp. 1033. (2002).
[12] Dawson, P.C., Blundell, D.J., “X-ray data for poly(aryl ether ketones)”, Polymer reports, Vol. 102, pp. 577 . (1980).
[13] Karacan, I., “X-ray diffraction studies of poly(aryl ether ether ketone) fibers with different degrees of crystallinity and orientation”, Fibers and Polymers, Vol. 6, pp.206 . (2005). [14] Hay, J.N., Langford, J.I., Lloyd, J.R., “Variation in unit cell parameters of aromatic polymers with crystallization temperature”, Polymer, Vol.30, pp.459. (1989).
[15] Fratini, A.V., Cross, E.M., Whitaker, R.B., Adams, W.W., “Refinement of the structure of PEEK fiber in an orthorhombic unit-cell”, Polymer, Vol. 27, pp.861. (1986).
[16] Iannelli, P., “molecular-structure refinement of poly(aryl ether ether ketone) by means of the whole fiber x-ray-diffraction pattern-analysis”, Macromolecules, Vol. 26, pp.2309. (1993).
[17] Xiang, L.J., Wan, J. Z., Hui, N., Xue, P. Q., Jun, Z. W., Zhong, W. W., Zhi, S. M., Hong, F. Z., “Effect of differences in the backbone chemical environment of carbonyl and ether groups in poly(aryl ether ketones) on crystallographic parameters”, Macromolecules, Vol. 30, pp.4772. (1997).
[18] Carroway, A.N., Ritchey, W.M., oniz, W.B., “Some molecular motions in epoxy polymers: a carbon-13 solid-state NMR study”, Macromolecules, Vol. 15, pp.1051. (1983). [19] Kolinski, A., Skolnick, J., Yaris, R., “Monte Carlo study of local orientational order in a semiflexible polymer melt model”, Macromolecules, Vol. 19, pp.2550. (1986).
[20] Schaefer, J., Stejskal, E.O., Perchak, D., Skolnick, J., Yaris, R.,“Molecular mechanism of the ring-flip process in polycarbonate”, Macromolecules, Vol. 18, pp.368. (1985).
[21] Chen, C.L., Lee, C.L., Chen, H.L., Shih, J.H., “Molecular-dynamics simulation of a phenylene polymer .3. PEEK”, Macromolecules, Vol. 27, pp.7872. (1994).
[22] Lommerse, J.P.M., Price, S.L., Taylor, R., “Hydrogen bonding of carbonyl, ether, and ester oxygen atoms with alkanol hydroxyl groups”, Journal of Computational Chemistry, Vol. 18, pp.757. (1997).
[23] Du, J.C., Cormack, A.N., “Molecular dynamics simulation of the structure and hydroxylation of silica glass surfaces”, Journal of the American Ceramic Society, Vol. 88, pp.2532. (2005). [24] 徐國財、張立德,奈米複合材料,五南圖書出版股份有限公司,pp.2-16. (2004).
[25] Flikkema, E., Bromley, S.T., “A new interatomic potential for nanoscale silica”, Chem. Phys, Lett., Vol. 378, pp.622. (2003).
[26] SmithG., J.S., SmithO., D., Borodin, “Modeling of PDMS - Silica nanocomposites”, J. Phys. Chem. B, Vol.108, pp.20340. (2004).
[27] Brown, D., Marcadon, V., Mele, P., Alberola, N.D., “Effect of filler particle size on the properties of model nanocomposites”, Macromolecules, Vol. 41, pp.1499. (2008).
[28] Adnan, A., Sun, C.T., Mahfuz, H., “A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites”, Composites Science and Technology, Vol. 67, pp.348. (2007).
[29] Smith, J.S., Bedrov, D., Smith, G.D., “A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite”, Composites Science and Technology, Vol. 63, pp.1599. (2003).
[30] Irving, J., Kirkwood, J., “The statistical mechanical theorey of transport properties. IV. The equations of hydrodynamics”, Journal of Chemical Physical, Vol. 18, pp. 817. (1950).
[31] Lifson, S., Warshel, A., “Consistent force field calculations of conformations vibrational spectra and enthalpies of cycloalkane and n-alkane molecules”, Journal of Chemical Physics, Vol. 49, pp. 5116. (1968).
[32] Warshel, A., Lifson, S., “Consistent force field calculations .2. crystal structures,sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes”, Journal of Chemical Physics, Vol. 53, pp. 582. (1970).
[33] Levitt, M., Lifson, S., “Refinement of protein conformations using a macromolecular energy minimization procedure”, Journal of Molecular Biology, Vol. 46, pp. 269. (1969).
[34] Hagler, A., Stern, P., Sharon, R., Becker, J., Naider, F., “Computer-simulation of the conformational properties of oligoperptides-comparison of theoretical methods and analysis of experimental results”, Journal of the American Chemical Society, Vol. 101, pp. 6842. (1979).
[35] Levitt, M., “Molecular-dynamics of native protein .1. computer-simulation of trajectories”, Journal of Molecular Biology, Vol. 168, pp. 595. (1983).
[36] Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M., “Charm-a program for macromolecular energy, minimization, and dynamics calculations”, Journal of Computational Chemistry, Vol. 4, pp. 187. (1983).
[37] Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., Weiner, P., “A new force-field for molecular mechanical simulation of nucleic-acids and proteins”, Journal of the American Chemical Society, Vol. 106, pp. 765. (1984).
[38] Gunsteren, Berendsen, H.J.C., "Groningen Molecular Simulation (GROMOS) Library Manual," Bimos, University of Groningen, Groningen (1987). [39] Sun, H., “COMPASS: An ab initio force-field optimized for condensed-phase applications - Overview with details on alkane and benzene compounds”, Journal of Physical Chemistry B, Vol. 102, pp. 7338. (1998).
[40] MacKerell, J.A.D., Bashford, D., Bellott, M., Dunbrack, J.R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, I.W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M., “All-atom empirical potential for molecular modeling and dynamics studies of proteins”, J. Phys. Chem. B, Vol. 102, pp. 3586. (1998).
[41] Teleman, O., Jonsson, B., Engstrom, S., “A molecular-dynamics simulation of a water model with intramolecular degrees of freedom”, Molecular Physics, Vol. 60, pp. 193. (1987).
[42] Leach, A.R., “Molecular Modelling Principles and Applications”, Addison Wesley Longman, London, (1996). [43] Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., et al., “Molecular dynamics with coupling to an external bath”, J. Chem. Phys, Vol. 81, pp. 3684.
[44] Haile, J., “Molecular Dynamics Simulation: Elementary Methods”, John Wiley & Sons, Inc., New York, (1997).
[45] Rapaport, “The Art of Molecular Dynamics Simulation”, Cambridge University Press, London. (1997).
[46] Goodfellow, J.,” Molecular dynamics”, CRC Press, Boston. (1990).
[47] Allen, M., Tildesley, D., “Computer Simulation of Liquids”, Oxford Science, London.80, (1991).
[48] Frenkel, D., Smit, B., “Understanding Molecular Simulation”, Academic Press, San Diego. (1996).
[49] Heermann, D., “Computer Simulation Method”, Springer-Verlag, Berlin,( 1990). [50] Wong, H.Y., Lo, S.Y., “Possible mechanism of formation and stability of anomalous states of water”, Journal of Moleculae Biology, Vol. 42, pp. 1. (1998).
[51] Zakharov, V.V., Brodskaya, E.N., “Surface tension of water droplets: A molecular dynamics study of model and size dependencies”, Journal of Chemical Physical., Vol. 107, pp. 10675. (1997).
[52] Bitsanis, Hadziioannou, G., “Molecular dynamics simulations of the structure and dynamics of confined polymer melts”, Journal of Chemical Physical, Vol. 92, pp. 3827, (1990).
[53] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E., “Equation of state Calculations by fast computing machines”, J. Chem. Phys., Vol. 21, pp. 1087. (1953).
[54] Johnston, J.C., David, W. I. F., Markvardsen, A. J., Shankland, K., “A hybrid Monte Carlo method for crystal structure determination from powder diffraction data”, Acta Crystallographica Section A, Vol. 58, pp. 441. (2002).
[55] Chandra, N., Namilae, S., Shet, C., “Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects”, Physical Review B, Vol. 69, pp. 12. (2004).
|