跳到主要內容

臺灣博碩士論文加值系統

(98.80.143.34) 您好!臺灣時間:2024/10/16 09:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:施景賀
研究生(外文):Ching-ho Shih
論文名稱:以分子動力學探討高分子聚醚醚酮混合不同尺寸二氧化矽奈米粉之機械性質
論文名稱(外文):Investigation on the mechanical properties of polymer PEEK mixed with silica nanoparticles of different sizes by molecular dynamics simulation
指導教授:任明華任明華引用關係
指導教授(外文):Jen, Ming-Hwa R.
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:68
中文關鍵詞:二氧化矽分子動力學聚醚醚酮奈米顆粒
外文關鍵詞:NanoparticleMolecular dynamicsPEEKSilica
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究從實驗發現聚醚醚酮(PEEK)添加入奈米微粒(Nanoparticle)時比原先未添加奈米顆粒的複材積層板之極限強度及彈性常數分別均明顯的增強,因此本研究以分子動力學分析當添加入二氧化矽奈米顆粒(SiO2)於PEEK的非結晶處時,其機械性質改變及結構上的變化,並解釋PEEK材料的結構。本研究試圖建立不同SiO2顆粒尺寸對PEEK的結構產生的影響及強化的趨勢,並期望能找出性能優良之PEEK與SiO2混合之奈米高分子複合材料。
In this study, the molecular dynamics simulation method was used to investigate the mechanical properties of non-crystalline PEEK mixed with SiO2 nanoparticle. It is found the SiO2/PEEK nano-composite has higher mechanical properties in comparison with pure PEEK composite. Therefore, we wish to obtain the reason. The radial distribution function was used to explain the conformation of the change of microstructure and mechanical properties. The parametric study of different SiO2 particle size was discussed, such on the effects on the structure of PEEK and the strength of the structure.
目錄..............................................................................................................I
圖目錄........................................................................................................IV
表目錄.......................................................................................................VI
中文摘要.................................................................................................VII
ABSTRACT...........................................................................................VIII
第1章 緒論................................................................................................1
1.1 研究動機.............................................................................................1
1.2 文獻回顧.............................................................................................3
1.3 本文架構.............................................................................................6
第2章 模擬理論方法................................................................................9
2.1 勢能函數...........................................................................................10
2.2 運動方程式.......................................................................................12
2.3 積分法則...........................................................................................13
2.4 時間步階的選擇...............................................................................14
2.5 系綜...................................................................................................14
2.6 溫度修正方法...................................................................................15
2.7 週期性邊界條件...............................................................................16
第3章 分子動力學數值方法..................................................................19
3.1 鄰近原子表列法...............................................................................19
3.1.1 Verlet List 表列法.........................................................................19
3.1.2 Cell Link 表列法...........................................................................20
3.1.3 Verlet List 表列法結合Cell Link 表列法....................................21
3.2 無因次化...........................................................................................21
3.3 模擬流程圖.......................................................................................22
第4章 蒙地卡羅演算法與 Hybrid Monte Carlo 演算法......................26
4.1 蒙地卡羅演算法(Metropolis Monte Carlo Algorithm)................27
4.2 混合型蒙地卡羅演算法(Hybrid Monte Carlo).............................29
第5章 數值分析......................................................................................31
5.1 原子級應力數值計算及機械性質...................................................31
5.2 徑向分佈函數(Radial distribution function, RDF).....................32
5.3 迴轉半徑(Radius of gyration, Rg) ...............................................33
第6章 結果分析與討論..........................................................................36
6.1 分子動力學法的物理模型...............................................................36
6.2 性質與結構分析...............................................................................37
6.2.1 不同PEEK長度在相同尺寸二氧化矽下的影響.........................37
6.2.2 不同尺寸二氧化矽對相同長度PEEK複合材料結構的關係.....38
第7章 結論與建議..................................................................................45
7.1 結論...................................................................................................45
7.2 建議與未來展望...............................................................................46
參考文獻..................................................................................................47
[1] Rothon, R.N., “Mineral fillers in thermoplastics:filler manufacture and characterisation”, Adv. Polym. Sci., Vol.139, pp.67 .(1999).

[2] Liang, J.Z., “Tensile, flow, and thermal properties of CaCO3-filled
LDPE/LLDPE composites”, J. Appl. Polym. Sci., Vpl. 104, pp.1692. (2007).

[3] Zhang, Y.M., et al., “Effect of carbon black and silica fillers in elastomer blends”, Macromolecules, Vol.34, pp.7056. (2001).

[4] Bodor, G., “Structural investigation of polymers”, Ellis Hoewood, New York, (1991).

[5] Attwood, T.E., Dawson, P.C., Freeman, J.L., Hoy, L.R.J., Rose, J. B., Staniland, P.A., “Synthesis and properties of polyaryletherketones”, Polymer, Vol. 22, pp.1096. (1981).

[6] Burris, L.B., Sawyer, W.G., “Tribological behavior of PEEK components with compositionally graded PEEK/PTFE surfaces”, Wear, Vol. 262, pp. 220. (2007).
[7] Wenz, LM., Merritt, K., Brown, SA., Moet, A., Steffee, AD., “In vitro biocompatibility of polyetheretherketone and polysulfone composites”, J Biomed Mater Res., Vol. 24, pp.207. (1990).

[8] Katzer A., Marquardt, H., Westendorf, J., Wening, JV., Von Foerster, G., “Polyetheretherketone –cytotoxicity and mutagenicity in vitro”, Biomaterials, Vol. 23, pp. 1749. (2002).

[9] Evans, SL., Gregson, PJ., “Composite technology in load-bearing orthopaedic implants”,Biomaterials, Vol.19, pp.1329. (1998).

[10] Krishnakumar, S., “Fiber metal laminates : the synthesis of metals and composites”, Mater Manuf Process,Vol.9,pp.295.(1994).

[11] Sandler, J., Werner, P., Shaffer, M.S.P., Demchuk, V., Altstadt, V., Windle, A.H., “Carbon-nanofibre-reinforced poly(ether ether ketone) composites”, Composites Part a-Applied Science and Manufacturing, Vol.33, pp. 1033. (2002).

[12] Dawson, P.C., Blundell, D.J., “X-ray data for poly(aryl ether ketones)”, Polymer reports, Vol. 102, pp. 577 . (1980).

[13] Karacan, I., “X-ray diffraction studies of poly(aryl ether ether ketone) fibers with different degrees of crystallinity and orientation”, Fibers and Polymers, Vol. 6, pp.206 . (2005).
[14] Hay, J.N., Langford, J.I., Lloyd, J.R., “Variation in unit cell parameters of aromatic polymers with crystallization temperature”, Polymer, Vol.30, pp.459. (1989).

[15] Fratini, A.V., Cross, E.M., Whitaker, R.B., Adams, W.W., “Refinement of the structure of PEEK fiber in an orthorhombic unit-cell”, Polymer, Vol. 27, pp.861. (1986).

[16] Iannelli, P., “molecular-structure refinement of poly(aryl ether ether ketone) by means of the whole fiber x-ray-diffraction pattern-analysis”, Macromolecules, Vol. 26, pp.2309. (1993).

[17] Xiang, L.J., Wan, J. Z., Hui, N., Xue, P. Q., Jun, Z. W., Zhong, W. W., Zhi, S. M., Hong, F. Z., “Effect of differences in the backbone chemical environment of carbonyl and ether groups in poly(aryl ether ketones) on crystallographic parameters”, Macromolecules, Vol. 30, pp.4772. (1997).

[18] Carroway, A.N., Ritchey, W.M., oniz, W.B., “Some molecular motions in epoxy polymers: a carbon-13 solid-state NMR study”, Macromolecules, Vol. 15, pp.1051. (1983).
[19] Kolinski, A., Skolnick, J., Yaris, R., “Monte Carlo study of local orientational order in a semiflexible polymer melt model”, Macromolecules, Vol. 19, pp.2550. (1986).

[20] Schaefer, J., Stejskal, E.O., Perchak, D., Skolnick, J., Yaris, R.,“Molecular mechanism of the ring-flip process in polycarbonate”, Macromolecules, Vol. 18, pp.368. (1985).

[21] Chen, C.L., Lee, C.L., Chen, H.L., Shih, J.H., “Molecular-dynamics simulation of a phenylene polymer .3. PEEK”, Macromolecules, Vol. 27, pp.7872. (1994).

[22] Lommerse, J.P.M., Price, S.L., Taylor, R., “Hydrogen bonding of carbonyl, ether, and ester oxygen atoms with alkanol hydroxyl groups”, Journal of Computational Chemistry, Vol. 18, pp.757. (1997).

[23] Du, J.C., Cormack, A.N., “Molecular dynamics simulation of the structure and hydroxylation of silica glass surfaces”, Journal of the American Ceramic Society, Vol. 88, pp.2532. (2005).
[24] 徐國財、張立德,奈米複合材料,五南圖書出版股份有限公司,pp.2-16. (2004).

[25] Flikkema, E., Bromley, S.T., “A new interatomic potential for nanoscale silica”, Chem. Phys, Lett., Vol. 378, pp.622. (2003).

[26] SmithG., J.S., SmithO., D., Borodin, “Modeling of PDMS - Silica nanocomposites”, J. Phys. Chem. B, Vol.108, pp.20340. (2004).

[27] Brown, D., Marcadon, V., Mele, P., Alberola, N.D., “Effect of filler particle size on the properties of model nanocomposites”, Macromolecules, Vol. 41, pp.1499. (2008).

[28] Adnan, A., Sun, C.T., Mahfuz, H., “A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites”, Composites Science and Technology, Vol. 67, pp.348. (2007).

[29] Smith, J.S., Bedrov, D., Smith, G.D., “A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite”, Composites Science and Technology, Vol. 63, pp.1599. (2003).

[30] Irving, J., Kirkwood, J., “The statistical mechanical theorey of transport properties. IV. The equations of hydrodynamics”, Journal of Chemical Physical, Vol. 18, pp. 817. (1950).

[31] Lifson, S., Warshel, A., “Consistent force field calculations of conformations vibrational spectra and enthalpies of cycloalkane and n-alkane molecules”, Journal of Chemical Physics, Vol. 49, pp. 5116. (1968).

[32] Warshel, A., Lifson, S., “Consistent force field calculations .2. crystal structures,sublimation energies, molecular and lattice vibrations, molecular conformations, and enthalpies of alkanes”, Journal of Chemical Physics, Vol. 53, pp. 582. (1970).

[33] Levitt, M., Lifson, S., “Refinement of protein conformations using a macromolecular energy minimization procedure”, Journal of Molecular Biology, Vol. 46, pp. 269. (1969).

[34] Hagler, A., Stern, P., Sharon, R., Becker, J., Naider, F., “Computer-simulation of the conformational properties of oligoperptides-comparison of theoretical methods and analysis of experimental results”, Journal of the American Chemical Society, Vol. 101, pp. 6842. (1979).

[35] Levitt, M., “Molecular-dynamics of native protein .1. computer-simulation of trajectories”, Journal of Molecular Biology, Vol. 168, pp. 595. (1983).

[36] Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., Karplus, M., “Charm-a program for macromolecular energy, minimization, and dynamics calculations”, Journal of Computational Chemistry, Vol. 4, pp. 187. (1983).

[37] Weiner, S.J., Kollman, P.A., Case, D.A., Singh, U.C., Ghio, C., Alagona, G., Profeta, S., Weiner, P., “A new force-field for molecular mechanical simulation of nucleic-acids and proteins”, Journal of the American Chemical Society, Vol. 106, pp. 765. (1984).

[38] Gunsteren, Berendsen, H.J.C., "Groningen Molecular Simulation (GROMOS) Library Manual," Bimos, University of Groningen, Groningen (1987).
[39] Sun, H., “COMPASS: An ab initio force-field optimized for condensed-phase applications - Overview with details on alkane and benzene compounds”, Journal of Physical Chemistry B, Vol. 102, pp. 7338. (1998).

[40] MacKerell, J.A.D., Bashford, D., Bellott, M., Dunbrack, J.R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, I.W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D., Karplus, M., “All-atom empirical potential for molecular modeling and dynamics studies of proteins”, J. Phys. Chem. B, Vol. 102, pp. 3586. (1998).

[41] Teleman, O., Jonsson, B., Engstrom, S., “A molecular-dynamics simulation of a water model with intramolecular degrees of freedom”, Molecular Physics, Vol. 60, pp. 193. (1987).

[42] Leach, A.R., “Molecular Modelling Principles and Applications”, Addison Wesley Longman, London, (1996).
[43] Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., et al., “Molecular dynamics with coupling to an external bath”, J. Chem. Phys, Vol. 81, pp. 3684.

[44] Haile, J., “Molecular Dynamics Simulation: Elementary Methods”, John Wiley & Sons, Inc., New York, (1997).

[45] Rapaport, “The Art of Molecular Dynamics Simulation”, Cambridge University Press, London. (1997).

[46] Goodfellow, J.,” Molecular dynamics”, CRC Press, Boston. (1990).

[47] Allen, M., Tildesley, D., “Computer Simulation of Liquids”, Oxford Science, London.80, (1991).

[48] Frenkel, D., Smit, B., “Understanding Molecular Simulation”, Academic Press, San Diego. (1996).

[49] Heermann, D., “Computer Simulation Method”, Springer-Verlag, Berlin,( 1990).
[50] Wong, H.Y., Lo, S.Y., “Possible mechanism of formation and stability of anomalous states of water”, Journal of Moleculae Biology, Vol. 42, pp. 1. (1998).

[51] Zakharov, V.V., Brodskaya, E.N., “Surface tension of water droplets: A molecular dynamics study of model and size dependencies”, Journal of Chemical Physical., Vol. 107, pp. 10675. (1997).

[52] Bitsanis, Hadziioannou, G., “Molecular dynamics simulations of the structure and dynamics of confined polymer melts”, Journal of Chemical Physical, Vol. 92, pp. 3827, (1990).

[53] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., Teller, E., “Equation of state Calculations by fast computing machines”, J. Chem. Phys., Vol. 21, pp. 1087. (1953).

[54] Johnston, J.C., David, W. I. F., Markvardsen, A. J., Shankland, K., “A hybrid Monte Carlo method for crystal structure determination from powder diffraction data”, Acta Crystallographica Section A, Vol. 58, pp. 441. (2002).

[55] Chandra, N., Namilae, S., Shet, C., “Local elastic properties of carbon nanotubes in the presence of Stone-Wales defects”, Physical Review B, Vol. 69, pp. 12. (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top