(3.237.97.64) 您好!臺灣時間:2021/03/04 14:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳匯琳
研究生(外文):Hui-Lin Chen
論文名稱:銅鎳合金和低碳鋼之摩擦攪拌搭接研究
論文名稱(外文):Studies on friction stir lap welding of Cu-Ni alloy and low carbon steel
指導教授:李榮宗李榮宗引用關係邱源成
指導教授(外文):R.T.LeeY.C.Chiou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:103
中文關鍵詞:摩擦攪拌搭接中間層
外文關鍵詞:Friction stir lap weldinginterlayer material
相關次數:
  • 被引用被引用:6
  • 點閱點閱:212
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用具有摩擦攪拌銲接動力計之實驗設備,探討以一直徑17mm之圓柱(無探針)銲接工具,在轉動速度800、1000及1400 rpm,進給速度10、40及80 mm/min之銲接條件下,對板厚3.6mm 之銅鎳合金及4mm之低碳鋼板進行搭接實驗。並且為了防止在銲接過程中搭接接合界面受高溫氧化,於銲接前,預先在銅鎳合金接合界面鍍上0μm、5μm及低碳鋼接合界面鍍上0μm、5μm、10μm、20μm及40μm之鎳層,探討鍍層厚度對搭接接合強度之影響及接合機制。
實驗結果得知,在銲接參數為轉動速度1000rpm及進給速度10mm/min下,接合界面之抗剪強度在無鍍層之情況下約為100MPa,但隨鍍層厚度的增加而增加至飽和值。尤其是,當銅鎳合金側及低碳鋼側分別鍍上5μm及20μm之鎳鍍層時,抗剪強度可達到約290MPa,其是無鍍層試片之2.9倍。此外,當轉速(N)增加時,擠壓力(Fd)下降,而接合溫度(Tmax)及抗剪強度(τ)上升。又當進給速度(f)增加時,擠壓力上升,而接合溫度及抗剪強度下降。這複雜的關係,藉由Fd‧N/f參數與接合溫度及抗剪強度之關係整合得知,當Fd‧N/f值增加,接合溫度隨之增加,而抗剪強度則增加至飽和值(290MPa),此現象為兩板材界面擴散接合更緊密之故。
In this study, the experimental apparatus with a friction stir welding dynamometer was employed to investigate the joint characteristics of Cu-Ni alloy plate in thickness of 3.6mm lap-welding to low carbon steel plate in thickness of 4 mm using cylinder type tool (without probe) under the welding parameters of rotating speeds (800~1400 rpm) and traveling speed of tool (10~80 mm/min). To prevent the joint interface from oxidizing during the welding process, the joint interfaces of Cu-Ni alloy and low carbon steel respectively were electroplated with Ni coating layer in different thicknesses before the welding. The effect of the thickness of Ni coating layer on shear strength of joint interface and the mechanism of welding are also investigated.
Experimental results show that under the rotating speed of 1000 rpm and travelling speed of 10 mm/min, the shear strength for without Ni coating layer is measured about 100 MPa. On the other hand, the shear strength is increased to saturated value of 290 MPa with increasing the thickness of Ni coating layer. Especially, the shear strength of joint interface for the Cu-Ni alloy with 5μm thickness of Ni coating layer lap-welding to low carbon steel with thickness of 20μm thickness of Ni coating layer is about 2.9 times of that for without Ni coating layer. Moreover, the downward force (Fd) is decreased and the maximum interface temperature (Tmax) and shear strength (τ) are increased with increasing the rotating speed (N). The downward force is increased and the maximum interface temperature and shear strength are decreased with increasing the traveling speed (f). This complex relationship is discussed by the new parameter of Fd‧N/f, the relationship among Fd‧N/f, maximum interface temperature and shear strength shows that the maximum interface temperature is increased and shear strength is increased to saturated value of 290 MPa with increasing Fd‧N/f. The phenomenon is explained that the diffusion bonding between the joint interface of two plates become more homogeneous.
總 目 錄
封面………......................................................................I
學位論文審定書...............................................................ii
謝誌……........................................................................iii
總 目 錄........................................................................iv
圖目錄...........................................................................vii
表目錄............................................................................xi
中文摘要……………….......................................................................xii
英文摘要......................................................................xiv
第一章 緒論............................................................................................1
1-1 前言…………………………………………………………….. 1
1-2 摩擦攪拌銲接之優點..................................................................2
1-3 文獻回顧....................................................................................3
1-3-1 摩擦攪拌搭接.....................................................................3
1-3-2 傳統擴散接合...................................................................7
1-4本論文之研究目的.....................................................................10
第二章 實驗設備與方法...................................................................11
2-1 實驗設備.................................................................................11
2-1-1 三分力動力計.................................................................11
2-1-2 三分力量測系統............................................................13
2-2 實驗試片之材料特性……………………………………….14
2-3 試片之幾何形狀.....................................................................15
2-4 銲接工具設計與選用.............................................................15
2-5 背部墊塊之選用.....................................................................16
2-6 實驗方法 .................................................................17
2-6-1 實驗參數規劃................................................................17
2-6-2 中間層材料之選用..........................................................18
2-6-3 試片前處理....................................................................25
2-6-4 銲接界面溫度量測……………………………...............28
2-6-5 實驗步驟..........................................................................29
2-7 拉伸實驗試片準備...............................................................31
2-8 銲接界面擴散層觀察試片取樣...............................................32
2-9 實驗流程...................................................................................33
第三章 實驗結果與討論...................................................................34
3-1 無中間層時之搭接情形...........................................................34
3-1-1銲接界面溫度與擠壓力變化...................................34
3-1-2 無中間層搭接之銲接強度……………………………...44.
3-2 銲接界面之鍍層.....................................................................48
3-2-1鎳鍍層厚度的影響.................................................................48
3-3 轉速及進給速度之影響..………………………………….60
3-3-1轉速及進給速度對抗剪強度及接合溫度之影響...........61
3-3-2擠壓力、轉速與進給對接合溫度及抗剪強度之影響...64
3-3-2破斷面之SEM觀察及分析.............................................66
3-3-3破斷面之Mapping觀察...................................................70
3-3-4 擴散層厚度之觀察..........................................................74
3-3-5 材料擴散接合之機制…………………………………...76
3-4 製造金屬/鋼披覆板之可行性評估…………………………..78
第四章 結論與未來研究方向………………………………………80
4-1結論……………………………………………………………80
4-2未來研究方向………………………………………………….82
參考文獻………………………………………………………………83.

圖 目 錄
圖1-1 摩擦攪拌銲接之前進邊與後退邊示意圖...............1
圖1-2 摩擦攪拌銲接之接合型態圖,(a)對接(b)邊接(c)T型
對接(d)搭接(e)多板搭接(f)T型搭接及(g)角接......2
圖1-3 接合界面之BSE照片,(a)銅合金對鎢和(b)銅合金對
不鏽鋼.................................................................8
圖2-1 三分力動力計示意圖,分別量測進給力(X)、夾緊力(Y)及軸向力(Z).......................................................................12
圖2-2 三分力量測系統配線示意圖...............................................13
圖2-3 銲接工具幾何形狀...............................................................15
圖2-4 Fe-O之兩相圖......................................................................19
圖2-5 Cu-O之兩相圖......................................................................19
圖2-6 銲道末端材料面觀測示意圖...............................................21
圖2-7 銲道末端界面有鍍層及無鍍層之氧化程度比較圖...........21
圖2-8 Ni-Cu之合金相圖................................................................23
圖2-9 Cu-Ni固熔強化圖................................................................24
圖2-10 Ni-Fe之合金相圖.................................................................24
圖2-11 電鍍設備示意圖...................................................................27
圖2-12 銲接界面溫度量測位置示意圖...........................................28

圖2-13 拉伸實驗試片尺寸示意圖...................................................31
圖2-14 實驗流程圖...........................................................................33
圖3-1 為實際銲接時之預熱情形,銲接工具以高轉動速度(a)壓入試片表面,(b)持續加熱,(c)預熱完成..................................35
圖3-2 以K型熱電偶量取銲接界面溫度變化及相對應之銲接力量圖,銲接參數為轉動速度1000 rpm和進給速度10 mm/min................................................................................................36
圖3-3 固定進給速度10mm/min下,不同工具轉動速度(a)800rpm,(b)1000rpm及(c)1400rpm之擠壓力變動圖.......................38
圖3-4 固定轉動速度1000 rpm下,不同工具轉動速度(a)10 mm/min,(b)40 mm/min及(c)80 mm/min之擠壓力變動圖
................................................................................................40
圖3-5 固定進給速度為10mm/min下,轉動速度對銲接界面溫度與擠壓力之影響.......................................................................42
圖3-6 固定轉動速度為1000 rpm下,進給速度對銲接界面溫度與擠壓力之影響.......................................................................43
圖3-7 固定進給速度10 mm/min下,銲接工具轉動速度對銲接強度
之影響...................................................................................45
圖3-8 拉伸實驗後試片銲接剪斷面之分析,(a)試片銲接剪斷面之觀
察位置示意圖,(b) 銅鎳合金側未銲接與銲接後破斷面之
EDS分析,(c)低碳鋼側未銲接與銲接後破斷面之EDS分析 …………………...…………………………………………...47
圖3-9 在銲接工具轉動速度1000 rpm及進給速度10 mm/min 之銲接條件下,改變銅鎳合金側(C71000)及低碳鋼側(SS 400)鍍層厚度對抗剪強度之影響...................................................50
圖3-10 抗剪試驗後,各參數下剪斷面之銅鎳合金側與低碳鋼側
SEM觀察照片......................................................................53
圖3-11 5μm/20μm參數下虛線及實線箭頭處放大圖,(a)放大100
倍下SEM圖,(b)虛線箭頭處放大500倍圖及(c) 實線箭頭處
放大500倍圖.........................................................................54
圖3-12 無鍍層時破斷面mapping圖...............................................55
圖3-13 有鍍層時破斷面mapping圖(5μm/5μm).............................56
圖3-14 抗剪破斷面之EDS分析,(a)銅鎳合金(C71000)側(b)
低碳鋼(SS400)側..................................................................59
圖3-15 不同的轉動速度與進給速度下之抗剪強度值...................62
圖3-16 不同的轉動速度與進給速度下之接合溫度值……………..62
圖3-17 不同的轉動速度與進給速度下之擠壓力值………………63
圖3-18 Fd·N/f與最高接合溫度及抗剪強度之關係………………64
圖3-19 抗剪強度與最大接合溫度之關係………………………….65
圖3-20 固定進給速度10mm/min,不同轉速條件下之銅鎳合金側及
低碳鋼側破斷面之SEM照.................................................68
圖3-21 固定旋轉速度1000 rpm,不同進給條件下之銅
鎳合金側及低碳鋼側破斷面之SEM照片..……….69
圖3-22 轉動速度1000rpm及進給速度10mm/min時破斷面mapping圖............................................................................................71
圖3-23 轉動速度1000rpm及進給速度40mm/min時破斷面mapping
圖............................................................................................72
圖3-24 轉動速度1000rpm及進給速度80mm/min時破斷面mapping圖............................................................................................73
圖3-25 在固定進給速度10mm/min下,不同轉速(a)800rpm及(b)1400rpm之剖面linescan觀察圖....................................75
圖3-26 銲接界面之擴散接合機制圖...............................................77

表 目 錄
表2-1 銅鎳合金(C71000)之主要成份(wt %).................................14
表2-2 表2-2 低碳鋼(SS 400)之主要成份(wt %)..........................14
表2-3 高速鋼(SKH51)主要成份(wt%)...........................................15
表2-4 實驗參數表...........................................................................17
表2-5 鎳、銅鎳合金及低碳鋼抗拉強度.......................................23
【1】W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, C. J. Drawes, 〝Friction Stir Butt Welding〞, G B Patent Application No. 9125978.8, Dec. 1991; S.S. Patent No. 5460317, Oct., 1995.
【2】W. M Thomas, E. D. Nicholas, R. E. Dolby, C. J. Jones, R. H. Lilley, 〝Friction Plug Extrusion〞, International Patent PCT/GB92/01540.21.8.92.
【3】W.B. Lee , Y.M. Yeon ,S.B. Jung, 〝The joint properties of dissimilar formed Al alloys by friction stir welding according to the fixed location of materials〞, Scripta Materialia ,vol. 49 (2003) 423–428
【4】R.S. Mishraa, Z.Y. Mab, 〝Friction stir welding and processing〞, Materials Science and Engineering R 50 (2005) 1–78.
【5】K.Kimapong and T. Watanabe , 〝Lap joint of A5083 Aluminum alloy and SS400 steel by friction stir welding〞, Materials Transactions,vol.46,No. 4( 2005),pp.835~841
【6】M.K. Kulekci , A. Şik & E. Kaluç, 〝Effects of tool rotation and pin diameter on fatigue properties of friction stir welded lap joints〞, Int J Adv Manuf Technol (2008) 36:877–882
【7】Y.C. Chen, K. Nakata, 〝Effect of tool geometry on microstructure and mechanical properties of friction
stir lap welded magnesium alloy and steel〞, Materials and Design 30 (2009) 3913–3919
【8】Kinya Aota,Kenji Ikeuchi〝Friction stir welding of aluminium lap joint by tool without probe〞, Metallurgical and Material Transaction, Vol. 29A, 1998, pp.1955-1964.
【9】V. Soundararajan, E. Yarrapareddy, and R. Kovacevic, 〝Investigation of the Friction Stir Lap Welding of Aluminum Alloys AA 5182 and AA 6022〞, Journal of Materials Engineering and Performance, Volume 16(4) August 2007—477
【10】M. Ericsson, R. Sandstrom, 〝Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG〞, International Journal
of Fatigue, Vol. 25, Issue 23, 2003, pp.1379-1387.
【11】Y.C. Chen, K. Nakata,〝Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys〞, Materials and Design 30 (2009) 469–474
【12】A.Abdollah-Zadeh,T.Saeid,B.Sazgari, 〝Microstructural and mechanical properties of frictionstir welded aluminum/copper lap joints〞, Journal of Alloys and Compounds 460 (2008) 535–538
【13】Y.C. Chen and K. Nakata, 〝Friction stir lap joining aluminum and magnesium alloys〞, Scripta Materialia 58 (2008) 433–436
【14】T. Saeida, A. Abdollah-zadeh, B. Sazgari, 〝Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding〞, Journal of Alloys and Compounds 490 (2010) 652–655
【15】A.Elrefaey,M.Takahashi,K.Ikeuchi, 〝Preliminary investigation of friction stir welding Aluninium/copper lap joints〞Welding in the word ,vol.49 (2005)
【16】Y.C. Chena, T. Komazaki, Y.G. Kima, T. Tsumuraa, K. Nakata,〝Interface microstructure study of friction stir lap jointof AC4C cast aluminum alloy and zinc-coated steel〞, Materials Chemistry and Physics 111 (2008) 375–380
【17】宋政昌,〝摩擦銲接強度之強化方法研究〞,中山大學機械與機電工程研究所碩士論文,2009。
【18】O. Torun, İ. Çelikyürek, R. Gürler, 〝Diffusion bonding of iron aluminide Fe72Al28 using a copper interlayer〞, Materials Characterization 59 (2008) 852 – 856
【19】Z. Zhonga, T. Hinoki,A. Kohyama, 〝Effect of holding time on the microstructure and strength of tungsten/ferritic steel joints diffusion bonded with a nickel interlayer〞, Materials Science and Engineering A 518 (2009) 167–173
【20】P. He, X. Yue, J.H. Zhang,〝Hot pressing diffusion bonding of a titanium alloy to a stainless
steel with an aluminum alloy interlayer〞, Materials Science and Engineering A 486 (2008) 171–176
【21】L.M. Zhao and Z.D. Zhang,〝Efect of Zn alloy interlayer
on interface microstructure and strength of difusion-bonded Mg–Al joints〞, Scripta Materialia 58 (2008) 283–286.
【22】M.I. Barrena, J.M. Gómez de Salazar,N.Merino, L. Matesanz,〝Characterization of WC–Co/Ti6Al4V diffusion bonding jointsusing Ag as interlayer〞, Materials Characterization 59 (2008) 1407 – 1411
【23】I.S. Batra, G.B. Kale, T.K. Saha, A.K. Ray, J. Derose , J. Krishnan, 〝Diffusion bonding of a Cu–Cr–Zr alloy to stainless steel and tungsten using nickel as an interlayer〞, Materials Science and Engineering A369 (2004) 119–123
【24】S. Kundu , S. Chatterjee,〝Characterization of diffusion bonded joint between titanium and 304 stainless steel using a Ni interlayer〞, Materials Characterization 59 (2008) 631 – 637.
【25】〝ASM Metals HandBook Volume 03 Alloy Phase Diagrams〞, ASM International Alloy Phase Diagram and the Handbook Committees
【26】 E. A. Brandes, G. B. Brook, 〝Smithells Metals
Reference Book Seventh Edition〞, Reed Educational and Pmfessiond Publishing Ltd 1992
【27】賴耿陽,〝非鐵金屬材料〞,復漢書局,1982
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 江武昌,〈台灣布袋戲簡史〉,《民俗曲藝》,67-68(台北,1990):88-126。
2. 江武昌,〈五洲元祖:黃海岱〉,《民俗曲藝》,35(台北,1985):90-106。
3. 王耀庭,〈肖像.相勢.相法〉,《美育》,99(台北市,1998):21-30。
4. 吳明德,〈苦心孤詣窮形盡相:許國良和全新東周列國造型戲偶〉,《當代》,220(台北,2005.12):46-53。
5. 吳彥霖、陳孝銘和吳淑明,〈索緒爾的記號概念與《易》象思維之關涉研究〉,《設計學研究》,8.2(桃園,2005.12):63-79。.
6. 林明德,〈窺意象而運斤:徐柄垣和他的布袋戲偶〉,《傳統藝術》,18(宜蘭縣,2002.04):24-27。
7. 林銘煌,〈產品語意學--後工業設計師:科技的詮釋者〉,《工業設計雜誌》,22.3(台北,1993):162-169。
8. 洪孟啟,〈後現代思潮下的傳統藝術〉,《傳統藝術》,56(宜蘭縣,2005.7):22-29。
9. 洪淑珍,〈彰化「巧成真木偶之家」徐柄垣的戲偶雕刻〉,《臺灣民俗藝術彙刊》,1(台北:2004.10):56-73。
10. 翁瑜敏,〈黃海岱和他的布袋戲家族──偶戲傳家一世紀〉,《經典》,20(台北市,2003.03):52-71。
11. 高瑞陽、洪煜清、蔡旺晉、陳力豪和李傳房,〈建立Pili版圖的四種構面(二)〉,《設計研究》,6(雲林縣,2006.07):53-69。
12. 高瑞陽、劉時泳、劉真吟和黃世輝,〈建立pili版圖的四種構面(一)〉,《設計研究》,6(雲林縣,2006.07):41-52。
13. 陳孝銘,〈由意義元素論(皮爾斯)、意義三角模式論(理查斯、奧古斯)及隱含義、寓言、移情作用探索符號圖像形成意義化之原理〉,《東方工商學報》,21(高雄,1998.03):52-60。
14. 陳龍廷,〈電視布袋戲的發展與變遷〉,《民俗曲藝》,67-68(台北市,1985):68-73。
15. 黃明峰,〈偶頭之美:屏東縣兩位布袋戲偶頭雕刻師訪問記〉,《文化生活》,3.6(屏東市,2000.7):6-7。
 
系統版面圖檔 系統版面圖檔