(34.201.11.222) 您好!臺灣時間:2021/02/25 05:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高華德
研究生(外文):Hua-de Gau
論文名稱:熱效應於銅銲線接合製程之有限元素法模擬
論文名稱(外文):Thermal Effects on Cu Wire Bonding by Using Finite Element Simulation
指導教授:錢志回
學位類別:碩士
校院名稱:國立中山大學
系所名稱:機械與機電工程學系研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:143
中文關鍵詞:有限元素法金銲線熱超音波接合銅銲線熱超音波接合熱固耦合
外文關鍵詞:Gold thermosonic wire bondingFinite element methodCopper thermosonic wire bondingThermo-mechanical coupling analysis
相關次數:
  • 被引用被引用:10
  • 點閱點閱:337
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  銲線接合技術發展時間較久,相關設備及技術也較其他接合方式成熟且產品可靠度較高,故目前在封裝製程上銲線接合技術仍為主流的製程方法。現今主要使用金線做為接合的線材,但由於金價逐年上漲,在成本與市場的考量下,因而有了以銅線取代金線的作法產生。
  本研究主要透過三維有限元素法模擬銅銲線-鋁墊於熱超音波接合時之衝擊與超音波振動階段,比較不考慮熱效應時之結構計算模擬與考慮熱效應之熱固耦合模擬之求解結果的差異性,以及比較銅銲線熱超音波接合與金銲線熱超音波接合時之差異性,同時探討鋁墊厚度變化對銅銲線-鋁墊於熱超音波接合效果之影響。
  由本研究之分析結果可知,溫度變化造成之熱效應將導致材料機械性質的改變,使得考慮熱效應之熱固耦合模擬所得之整體等效應力與等效應變小於不考慮熱效應時之結構計算模擬結果,而銅銲線熱超音波接合相較於金銲線熱超音波接合造成鋁墊較大量的塑性變形,進而造成嚴重的鋁擠出現象,且增加鋁墊厚度對鋁擠出效應之改善並不明顯。
  Wire bonding has been used in integrated circuit packaging for many years which has been more full-grown than other bonding methods, and gold wire has been the preferred choice. Because of the rising price of gold every year, copper wire has been increasingly used to replace gold wire.
  The main focus of this paper is to simulate 3D copper-Al pad thermosonic wire bonding stage by using 3D finite element method. Firstly, the differences between mechanical analysis (the thermal effect was not considered) and thermo-mechanical coupling analysis from both impact stage and ultrasonic vibration stage, respectively, were compared. Secondly, the differences between copper thermosonic wire bonding analysis and gold thermosonic wire bonding analysis were discussed. Finally, the effects of Al pad thickness variation on the copper thermosonic wire bonding analysis were studied.
  Results showed that, due to the mechanical properties will be decreased by thermal effects caused from temperature increasing, the obtained effective stress and efective strain of thermo-mechanical coupling analysis were less than the results obtained from mechanical analysis. The pad plastic defomation in copper thermosonic wire bonding is more critical than gold thermosonic wire bonding. Therefore, copper thermosonic wire bonding will lead to serious pad splashing. Also, quantity of the decreasing of pad plastic deformation was limited by increasing the pad thickness.
目錄 I
表目錄 IV
圖目錄 VI
摘要 X
Abstract XI
第一章 緒論 1
1.1前言 1
1.2銲線接合製程技術介紹 2
1.3文獻回顧 3
1.4研究目標 8
1.5論文架構 9
第二章 研究方法 14
2.1有限元素法簡介 14
2.2 LS-DYNA程式簡介 16
2.3 LS-DYNA理論基礎 21
2.3.1結構計算之統御方程式(Governing Equation) 21
2.3.2時間積分(Time Integration) 24
2.3.3熱傳分析之統御方程式 25
第三章 分析方法 32
3.1熱固耦合 32
3.2熱固耦合模擬銲線接合模型之建構與邊界條件設定 34
3.2.1模擬模型結構與尺寸設定 34
3.2.2材料模型選用設定 35
3.2.3材料參數設定 36
3.2.4網格元素選用與劃分 39
3.2.5銲線接合過程與邊界條件設定 40
3.2.6銲線接合接觸設定 41
3.2.7熱傳條件設定 42
3.2.8等效應力與應變計算方法 44
第四章 結果與討論 57
4.1驗證模擬 57
4.2銲線熱超音波接合之衝擊階段模擬 59
4.2.1模擬結果分析 60
4.2.2模擬結果討論 66
4.3銲線熱超音波接合之超音波振動階段模擬 68
4.3.1模擬結果分析 69
4.3.2模擬結果討論 75
4.4不同鋁墊厚度之銅銲線熱超音波接合熱固耦合模擬 78
4.5銅銲線熱超音波接合熱固耦合模擬之平行運算效能測試 80
第五章 結論與未來展望 120
5.1結論 120
5.2未來展望 121
參考文獻 123

參考文獻
[1] G. G. Harman, Wire Bonding in Microelectronics, Second Edition, McGraw-Hill, New York, USA, 1997.
[2] R. R. Tummala, Fundamentals of Microsystems Packaging, International Edition, McGraw-Hill, New York, USA, 2001.
[3] http://www.smallprecisiontools.com/products-and-solutions/chip-bonding-tools/bonding-capillaries/technical-guide/basics-of-ball-bonding-process/gold-ball-wire-bonding-Process/?oid=562&lang=en, 2010/06/14.
[4] http://privatewww.essex.ac.uk/~bolat/Wirebonding.html, 2010/06/14.
[5] Properties and Selection: Nonferrous Alloys and Pure Metals, Metals Handbook, Asm Intl, Ninth Edtion, Vol.2, 1989.
[6] J. Chen, D. Degryse, P. Ratchev and I. de Wolf, “Mechanical issues of Cu-to-Cu wire bonding”, IEEE Transactions, Components and Packaging Technologies, Vol. 27, Iss. 3, pp. 539-545, 2004.
[7] J. Lee, M. Mayer, Y. Zhou, S. J. Hong and J. T. Moon, “Silver pick-up during tail formation and its effect on free air ball in thermosonic copper ball bonding”, 2008 Electronic Components and Technology Conference, Lake Buena Vista, FL USA , pp. 2024-2029, 27-30, May 2008.
[8] C.J. Hang, C.Q. Wang, Y.H. Tian, M. Mayer and Y. Zhou,“ Microstructural study of copper free air balls in thermosonic wire bonding”, Microelectronic Engineering, Vol.85, Iss.8 pp. 1815-1819, 2008.
[9] H. Xu, C. Liu, V. V. Silberschmidt and H. Wang,“Effects of process parameters on bondability in thermosonic copper ball bonding”, 2008 Electronic Components and Technology Conference, Lake Buena Vista, FL USA, pp. 1424-1430, 27-30, May 2008.
[10] H. J. Kim, J. Y. Lee, K. W. Paik, K. W. Koh, J. Won, S. Choe, J. Lee, J. T. Moon and Y. J. Park, “Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability”, IEEE Transactions, Components and Packaging Technologies, Vol.26, Iss. 2, pp. 367-374, 2003.
[11] L. S. Yeoh, “Characterization of intermetallic growth for gold bonding and copper bonding on aluminum metallization in power transistors”, 2007 Electronics Packaging Technology Conference, Singapore, pp. 731-736, 10-12, Dec. 2007.
[12] M. Drozdov, G. Gur, Z. Atzmon and W. D. Kaplan, “Detailed investigation of ultrasonic Al–Cu wire-bonds: I. Intermetallic formation in the as-bonded state”, Journal of Materials Science, Vol.43, No.18, pp. 6029-6037, 2008.
[13] M. Drozdov, G. Gur, Z. Atzmon and W. D. Kaplan, “Detailed investigation of ultrasonic Al–Cu wire-bonds: II. Microstructural evolution during annealing”, Journal of Materials Science, Vol.43, No.18, pp. 6038-6048, 2008.
[14] C. J. Hang, C. Q. Wang, M. Mayer, Y. H. Tian, Y. Zhou and H. H. Wang, “Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging”, Microelectronics Reliability, Vol. 48, No. 3, pp. 416-424, 2008.
[15] C. J. Hang, W. H. Song, I. Lum, M. Mayer, Y. Zhou, C. Q. Wang, J. T. Moon and J. Persic, “Effect of electronic flame off parameters on copper bonding wire: Free-air ball deformability, heat affected zone length, heat affected zone breaking force”, Microelectronic Engineering, Vol.86, Iss.10, p.p.2094-2103, 2009.
[16] H. Xu, C. Liua, V.V. Silberschmidt, S.S. Pramana, T.J. White and Z. Chen, “A re-examination of the mechanism of thermosonic copper ball bonding on aluminium metallization pads”, Scripta Materialia, Vol.61, Iss.2, pp. 165-168, 2009.
[17] C. F. Yua, C. M. Chana, L. C. Chana and K. C. Hsieh, “Cu wire bond microstructure analysis and failure mechanism”, Microelectronics Reliability, In Press, Available online 15 May 2010.
[18] H. Xu, C. Liu, V. V. Silberschmidt and Z. Chen, “Growth of intermetallic compounds in thermosonic copper wire bonding on aluminum metallization”, Journal of Electronic Materials, Vol. 39, No.1, pp. 124-131, 2010.
[19] N. Srikanth, J. Premkumar, M. Sivakumar, Y. M. Wong and C. J. Vath, III, “Effect of wire purity on copper wire bonding”, 2007 Electronics Packaging Technology Conference, Singapore, pp. 755-759, 10-12, Dec. 2007.
[20] A. Shah, M. Mayer, Y. N. Zhou, S. J. Hong and J. T. Moon, “Low-stress thermosonic copper ball bonding”, IEEE Transactions, Electronics Packaging Manufacturing, Vol.32, Iss.3, pp. 176 – 184, 2009.
[21] A. Shah, M. Mayer, Y. Zhou, J. Persic and J. T. Moon, “Optimization of ultrasound and bond force to reduce pad stress in thermosonic Cu ball bonding”, 2009 Electronics Packaging Technology Conference, Singapore, pp. 10-15, 9-11, Dec. 2009.
[22] C. L. Yeh, Y. S. Lai and C. L. Kao, “Comprehensive dynamic analysis of wirebonding on Cu/Low-K wafers”, IEEE Transactions, Electronics Packaging Manufacturing, Vol. 29, No. 2, pp. 264-270, 2006.
[23] P. C. Chin, C. Y. Hu, H. C. Hsu, S. L. Fu, C. L. Yeh and Y. S. Lai, “Characteristic of heat affected zone in thin gold wire and dynamic transient analysis of Wire Bonding for Microstructure of Cu/Low-K Wafer”, 2007 International, Microsystems, Packaging, Assembly and Circuits Technology, Taipei, pp. 297-300, 1-3, Oct. 2007.
[24] L. C. Chian, N. K. Chai, L. C. Chia, C. M. King, L. O. Seng and C. K. Yau, “Copper wire reliability and bonding integrity robustness on cratering sensitive bond pad structure”, 2007 International Conference on Electronics Manufacturing and Technology, Petaling Jaya, pp. 354-364, 8-10, Nov. 2007.
[25] Y. Liu, S. Irving and T. Luk, “Thermosonic wire bonding process simulation and bond pad over active stress analysis”, IEEE Transactions, Electronics Packaging Manufacturing, Vol. 31, No.1, pp. 61-71, 2008.
[26] V. Fiori, “3D multi scale modeling of wire bonding induced peeling in Cu/Low-K interconnects : application of an energy based criteria and correlations with experiments”, 2007 Electronic Components and Technology Conference, Reno, NV USA, pp. 256-263, 29 May, 1 June 2007.
[27] J. He, Y. Guo and Z. Lin, “Numerical and experimental analysis of thermosonic bond strength considering interfacial contact phenomena”, Journal of Physics D: Applied Physics, Vol.41, No.16, pp. 165-304, 2008.
[28] 施心智,具定向晶格效應於銅銲線製程之有限元素法模擬與分析,國立中山大學機械與機電工程研究所碩士論文,高雄,台灣,2009。
[29] A. G. K. Viswanath, F. Wang, X. Zhang, V. P. Ganesh and L. A. Lim,“Numerical analysis by 3D finite element wire bond simulation on Cu/low-K structures”, 2005 Electronic Electronics Packaging Technology Conference, Singapore, pp. 215-220, Dec. 2005.
[30] N. Srikanth, “Wire bond challenges in low-k devices”, Microelectronics International, Vol.25, Iss.1, pp. 1420-1423, 2008.
[31] 李裕春,時覺勇,趙遠, ANSYS 11.0/LS-DYNA基礎理論與工程實踐,中國水利水電出版社,北京,中國,2008。
[32] LS-DYNA Keyword User’s Manual, Version 971, Vol.1-2, http://www.dynasupport.com/news/ls-dyna-971-manual-pdf, 2010/06/14.
[33] J. O. Hallquist, LS-DYNA Theoretical Manual, Livermore Software Technology Corporations, California, USA, 1998.
[34] S. S. Rao, The Finite Element Method in Engineering, Third Edition, Butterworth-Heinemann, Florida, USA, 1998.
[35] A. B. Shapiro, “Heat transfer in LS-DYNA”, 2003 European LS-DYNA Conference, Ulm, Germany, May 2003.
[36] http://www.engineeringtoolbox.com/young-modulus-d_773.html, 2010/06/14.
[37] J. Gao, R. Kelly, Z. Yang and X. Chen, “An investigation of capillary vibration during wire bonding process”, 2008 Electronic Packaging Technology & High Density Packaging, Shanghai, China, pp.1-6, July 2008.
[38] F. C. Nix and D. MacNair, “The thermal expansion of pure metals: copper, gold, aluminum, nickel, and iron”, Thin Solid Films, Vol.60, Iss.8, pp. 597-605, 1941.
[39] Y. L. Shena and U. Ramamurty, “Temperature-dependent inelastic response of passivated copper films: experiments, analyses, and implications”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol.21, Iss.4, pp. 1258-1264, 2003.
[40] Z. Gan, W. Shao, S. G. Mhaisalkar, Z. Chen and H. Li, “The influence of temperature and dielectric materials on stress induced voiding in Cu dual damascene interconnects”, Physical Review, Vol.504, Iss.1-2, pp. 161-165, 2006.
[41] http://pccluster.nchc.org.tw/xoops/modules/tw_hpc/, 2010/06/14.
[42] 陳儀峰,金線與銅線的材料特性及其銲線製程之動態分析,義守大學機械與自動化工程學研究所碩士論文,高雄,台灣,2008。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔