|
參考文獻 [1]P. Gao, Z. Z. Wang, K. H. Liu, Z. Xu, W. L. Wang, X. D. Bai, , "Photoconducting response on bending of individual zno nanowires", Journal of Materials Chemistry, vol. 19, p. 1002-1005, 2009. [2]WangWang, J. Zhou, Song, J. Liu, N. Xu and Z. L. Wang, "Piezoelectric field effect transistor and nanoforce sensor based on a single zno nanowire", Nano Letters, vol. 6, p. 2768-2772, 2006. [3]Z. L. Wang and J. Song, "Piezoelectric nanogenerators based on zinc oxide nanowire arrays", Science, vol. 312, p. 242-246, 2006. [4]M. Haruta, "When gold is not noble: Catalysis by nanoparticle", Chem Record, vol. 3, p. 75, 2003. [5]M. Haruta, T. Kobayashi, H. Sano and N. Yamada, "Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0-degrees-c", Chemistry Letters, vol. p. 405-408, 1987. [6]M. Haruta, "Size- and support-dependency in the catalysis of gold", Catalysis Today, vol. 36, p. 153-166, 1997. [7]M. E. Davis, J. E. Zuckerman, C. H. J. Choi, D. Seligson, A. Tolcher, C. A. Alabi, , "Evidence of rnai in humans from systemically administered sirna via targeted nanoparticles", Nature, vol. 464, p. 1067-1070, [8]J.-g. Wang, Y.-a. Lv, X.-n. Li and M. Dong, "Point-defect mediated bonding of pt clusters on (5,5) carbon nanotubes", The Journal of Physical Chemistry C, vol. 113, p. 890-893, 2008. [9]J. A. Rodri?guez, J. Evans, J. s. Graciani, J.-B. Park, P. Liu, J. Hrbek, , "High water?隠as shift activity in tio2(110) supported cu and au nanoparticles: Role of the oxide and metal particle size", The Journal of Physical Chemistry C, vol. 113, p. 7364-7370, 2009. [10]V. Khatko, E. Llobet, X. Vilanova, J. Brezmes, J. Hubalek, K. Malysz, , "Gas sensing properties of nanoparticle indium-doped wo3 thick films", Sensors and Actuators B-Chemical, vol. 111, p. 45-51, 2005. [11]Y. K. Chung, M. H. Kim, W. S. Um, H. S. Lee, J. K. Song, S. C. Choi, , "Gas sensing properties of wo3 thick film for no2 gas dependent on process condition", Sensors and Actuators B-Chemical, vol. 60, p. 49-56, 1999. [12]D. S. Lee, S. D. Han, J. S. Huh and D. D. Lee, "Nitrogen oxides-sensing characteristics of wo3-based nanocrystalline thick film gas sensor", Sensors and Actuators B-Chemical, vol. 60, p. 57-63, 1999. [13]H. H. Nersisyan, J. H. Lee and C. W. Won, "A study of tungsten nanopowder formation by self-propagating high-temperature synthesis", Combustion and Flame, vol. 142, p. 241-248, 2005. [14]M. A. Butler, "Photoelectrolysis and physical-properties of semiconducting electrode wo3", Journal of Applied Physics, vol. 48, p. 1914-1920, 1977. [15]S. J. Wang, C. H. Chen, S. C. Chang, K. M. Uang, C. P. Juan and H. C. Cheng, "Growth and characterization of tungsten carbide nanowires by thermal annealing of sputter-deposited wcx films", Applied Physics Letters, vol. 85, p. 2358-2360, 2004. [16]B. S. Hobbs and A. C. C. Tseung, "Anodic-oxidation of hydrogen on platinized tungsten oxides .2. Mechanism of h2 oxidation on platinized lower tungsten oxide electrodes", Journal of the Electrochemical Society, vol. 122, p. 1174-1177, 1975. [17]I. Jimenez, J. Arbiol, G. Dezanneau, A. Cornet and J. R. Morante, "Crystalline structure, defects and gas sensor response to no2 and h2s of tungsten trioxide nanopowders", Sensors and Actuators B-Chemical, vol. 93, p. 475-485, 2003. [18]S. H. Wang, T. C. Chou and C. C. Liu, "Nano-crystalline tungsten oxide no2 sensor", Sensors and Actuators B-Chemical, vol. 94, p. 343-351, 2003. [19]P. J. Shaver, "Activated tungsten oxide gas detectors", Applied Physics Letters, vol. 11, p. 255-&, 1967. [20]D. J. Dwyer, "Surface-chemistry of gas sensors - h2s on wo3 films", Sensors and Actuators B-Chemical, vol. 5, p. 155-159, 1991. [21]A. A. Tomchenko, V. V. Khatko and I. L. Emelianov, "Wo3 thick-film gas sensors", Sensors and Actuators B-Chemical, vol. 46, p. 8-14, 1998. [22]A. A. Tomchenko, I. L. Emelianov and V. V. Khatko, "Tungsten trioxide-based thick-film no sensor: Design and investigation", Sensors and Actuators B-Chemical, vol. 57, p. 166-170, 1999. [23]G. H. Ryu, S. C. Park and S. B. Lee, "Molecular orbital study of the interactions of co molecules adsorbed on a w(111) surface", Surface Science, vol. 428, p. 419-425, 1999. [24]L. Chen, D. S. Sholl and J. K. Johnson, "First principles study of adsorption and dissociation of co on w(111)", Journal of Physical Chemistry B, vol. 110, p. 1344-1349, 2006. [25]H. T. Chen, D. G. Musaev and M. C. Lin, "Adsorption and dissociation of h2o on a w(111) surface: A computational study", Journal of Physical Chemistry C, vol. 111, p. 17333-17339, 2007. [26]H. L. Chen, S. P. Ju, H. T. Chen, D. G. Musaev and M. C. Lin, "Adsorption and dissociation of the hcl and cl-2 molecules on w(111) surface: A computational study", Journal of Physical Chemistry C, vol. 112, p. 12342-12348, 2008. [27]H. T. Chen, D. G. Musaev and M. C. Lin, "Adsorption and dissociation of cox (x=1, 2) on w(111) surface : A computational study", Journal of Physical Chemistry C, vol. 112, p. 3341-3348, 2008. [28]H. H. Hwu, B. D. Polizzotti and J. G. G. Chen, "Potential application of tungsten carbides as electrocatalysts. 2. Coadsorption of co and h2o on carbide-modified w(111)", Journal of Physical Chemistry B, vol. 105, p. 10045-10053, 2001. [29]J. B. Benziger, E. I. Ko and R. J. Madix, "Characterization of surface carbides of tungsten", Journal of Catalysis, vol. 54, p. 414-425, 1978. [30]C. M. Friend, J. G. Serafin, E. K. Baldwin, P. A. Stevens and R. J. Madix, "Bonding and adsorption structure of co on w(100)-(5x1)-c", Journal of Chemical Physics, vol. 87, p. 1847-1850, 1987. [31]B. Fruhberger and J. G. Chen, "Reaction of ethylene with clean and carbide-modified mo(110): Converting surface reactivities of molybdenum to pt-group metals", Journal of the American Chemical Society, vol. 118, p. 11599-11609, 1996. [32]B. Fruhberger and J. G. Chen, "Modification of the surface reactivity of mo(110) upon carbide formation", Surface Science, vol. 342, p. 38-46, 1995. [33]P. Gruene, D. M. Rayner, B. Redlich, A. F. G. van der Meer, J. T. Lyon, G. Meijer, , "Structures of neutral au-7, au-19, and au-20 clusters in the gas phase", Science, vol. 321, p. 674-676, 2008. [34]C. Lemire, R. Meyer, S. Shaikhutdinov and H. J. Freund, "Do quantum size effects control co adsorption on gold nanoparticles?", Angewandte Chemie-International Edition, vol. 43, p. 118-121, 2004. [35]G. Mills, M. S. Gordon and H. Metiu, "Oxygen adsorption on au clusters and a rough au(111) surface: The role of surface flatness, electron confinement, excess electrons, and band gap", Journal of Chemical Physics, vol. 118, p. 4198-4205, 2003. [36]G. G. Gaertner, Nanostruct Mater, vol. 4, p. 559, 1994. [37]B. Hvolbaek, T. V. W. Janssens, B. S. Clausen, H. Falsig, C. H. Christensen and J. K. Norskov, "Catalytic activity of au nanoparticles", Nano Today, vol. 2, p. 14-18, 2007. [38]H. Z. Zhang and J. F. Banfield, "Thermodynamic analysis of phase stability of nanocrystalline titania", Journal of Materials Chemistry, vol. 8, p. 2073-2076, 1998. [39]Z. J. Wu, "Density functional study of w2 and w3 clusters ", Chem Phys Lett, vol. 370, p. 510, 2003. [40]D. K. H. Weidele, E. Recknagel, "Thermionic emission from small clusters: Direct observation of the kinetic energy distribution of the electrons ", Chem Phys Lett, vol. 237, p. 425, 1995. [41]X. D. Xiurong Zhang, Bing Dai, Jinlong Yang, "Density functional theory study of wn (n=2-4) clusters", Journal of Molecular Structure: THEOCHEM, vol. 757, p. 113, 2005. [42]J. C. Slater, "A simplification of the hartree-fock method", Physical Review, vol. 81, p. 385, 1951. [43]P. Hohenberg and W. Kohn, "Inhomogeneous electron gas", Physical Review, vol. 136, p. B864, 1964. [44]W. Kohn and L. J. Sham, "Self-consistent equations including exchange and correlation effects", Physical Review, vol. 140, p. A1133, 1965. [45]K. W. Hohenberg P., "Inhomogenerous electron gas", Physical Review B, vol. 136, p. 964, 1964. [46]J. L. S. K.W., "Self-consistent equations including exchange and correlation effects", physical review A, vol. 140, p. 1133, 1965. [47]D. M. Ceperley and B. J. Alder, "Ground-state of the electron-gas by a stochastic method", Physical Review Letters, vol. 45, p. 566-569, 1980. [48]K. A. Jackson, M. Horoi, I. Chaudhuri, T. Frauenheim and A. A. Shvartsburg, "Unraveling the shape transformation in silicon clusters", Physical Review Letters, vol. 93, p. 013401, 2004. [49]K. A. Jackson, M. Horoi, I. Chaudhuri, T. Frauenheim and A. A. Shvartsburg, "Statistical evaluation of the big bang search algorithm", Computational Materials Science, vol. 35, p. 232-237, 2006. [50]S. S. Tripathi and K. S. Narendra, "Optimization using conjugate gradient methods", Ieee Transactions on Automatic Control, vol. AC15, p. 268-&, 1970. [51]D. C. Liu and J. Nocedal, "On the limited memory bfgs method for large-scale optimization", Mathematical Programming, vol. 45, p. 503-528, 1989. [52]J. C. Slater and G. F. Koster, "Simplified lcao method for the periodic potential problem", Physical Review, vol. 94, p. 1498, 1954. [53]C. Kittle, "Introduction to solid state physics", vol. p., 1996. [54]L. Colombo, "A source code for tight-binding molecular dynamics simulations", Computational Materials Science, vol. 12, p. 278-287, 1998. [55]J. Z. H. Zhang, "Theory and application of quantum molecular dynamics", vol. p., 1999. [56]C. H. Xu, C. Z. Wang, C. T. Chan and K. M. Ho, "A transferable tight-binding potential for carbon", Journal of Physics-Condensed Matter, vol. 4, p. 6047-6054, 1992. [57]I. Kwon, R. Biswas, C. Z. Wang, K. M. Ho and C. M. Soukoulis, "Transferable tight-binding models for silicon", Physical Review B, vol. 49, p. 7242-7250, 1994. [58]R. P. Gupta, "Lattice relaxation at a metal surface", Physical Review B, vol. 23, p. 6265, 1981. [59]M. Meyer, "Computer simulation in material science", Series E: Applied Sciences, vol. 205, p., 1991. [60]D. Tomanek, S. Mukherjee and K. H. Bennemann, "Simple theory for the electronic and atomic-structure of small clusters", Physical Review B, vol. 28, p. 665-673, 1983. [61]D. Tomanek, A. A. Aligia and C. A. Balseiro, "Calculation of elastic strain and electronic effects on surface segregation", Physical Review B, vol. 32, p. 5051-5056, 1985. [62]W. Zhong, Y. S. Li and D. Tomanek, "Effect of adsorbates on surface phonon modes - h on pd(001) and pd(110)", Physical Review B, vol. 44, p. 13053-13062, 1991. [63]M. M. Sigalas and D. A. Papaconstantopoulos, "Transferable total-energy parametrizations for metals: Applications to elastic-constant determination", Physical Review B, vol. 49, p. 1574, 1994. [64]G. C. Kallinteris, N. I. Papanicolaou, G. A. Evangelakis and D. A. Papaconstantopoulos, "Tight-binding interatomic potentials based on total-energy calculation: Application to noble metals using molecular-dynamics simulation", Physical Review B, vol. 55, p. 2150-2156, 1997. [65]V. Rosato, M. Guillope and B. Legrand, "Thermodynamical and structural-properties of fcc transition-metals using a simple tight-binding model", Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties, vol. 59, p. 321-336, 1989. [66]F. Cleri and V. Rosato, "Tight-binding potentials for transition-metals and alloys", Physical Review B, vol. 48, p. 22-33, 1993. [67]F. Ercolessi and J. B. Adams, "Interatomic potentials from 1st-principles calculations - the force-matching method", Europhysics Letters, vol. 26, p. 583-588, 1994. [68]M. S. Daw and M. I. Baskes, "Embedded-atom method - derivation and application to impurities, surfaces, and other defects in metals", Physical Review B, vol. 29, p. 6443-6453, 1984. [69]S. M. Foiles, M. I. Baskes and M. S. Daw, "Embedded-atom-method functions for the fcc metals cu, ag, au, ni, pd, pt, and their alloys", Physical Review B, vol. 33, p. 7983-7991, 1986. [70]M. Hou, "A molecular dynamics evidence for enhanced cluster beam epitaxy", Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 135, p. 501-506, 1998. [71]M. Hou and Z. Y. Pan, "Cascade statistics in the binary collision approximation and in full molecular-dynamics", Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, vol. 102, p. 93-102, 1995. [72]G. Mazzone, V. Rosato and M. Pintore, "Molecular-dynamics calculations of thermodynamic properties of metastable alloys", Physical Review B, vol. 55, p. 837-842, 1997. [73]I. Meunier, G. Treglia, B. Legrand, R. Tetot, B. Aufray and J. M. Gay, "Molecular dynamics simulations for the ag/cu (111) system: From segregated to constitutive interfacial vacancies", Applied Surface Science, vol. 162, p. 219-226, 2000. [74]M. A. Karolewski, "Tight-binding potentials for sputtering simulations with fcc and bcc metals", Radiation Effects and Defects in Solids, vol. 153, p. 239-255, 2001. [75]F. Y. Chen and R. L. Johnston, "Energetic, electronic, and thermal effects on structural properties of ag-au nanoalloys", Acs Nano, vol. 2, p. 165-175, 2008. [76]S. P. Ju, Y. C. Lo, S. J. Sun and J. G. Chang, "Investigation on the structural variation of co-cu nanoparticles during the annealing process", Journal of Physical Chemistry B, vol. 109, p. 20805-20809, 2005. [77]J. P. Perdew and W. Yue, "Accurate and simple density functional for the electronic exchange energy - generalized gradient approximation", Physical Review B, vol. 33, p. 8800-8802, 1986. [78]J. P. Perdew and Y. Wang, "Accurate and simple analytic representation of the electron-gas correlation-energy", Physical Review B, vol. 45, p. 13244-13249, 1992. [79]J. P. Perdew, K. Burke and M. Ernzerhof, "Generalized gradient approximation made simple (vol 77, pg 3865, 1996)", Physical Review Letters, vol. 78, p. 1396-1396, 1997. [80]Z. Hu, J.-G. Dong, J. R. Lombardi and D. M. Lindsay, "Optical and raman spectroscopy of mass-selected tungsten dimers in argon matrices", The Journal of Chemical Physics, vol. 97, p. 8811-8812, 1992. [81]M. D. Morse, "Clusters of transition-metal atoms", Chemical Reviews, vol. 86, p. 1049-1109, 1986. [82]M.-S. Lee, S. Chacko and D. G. Kanhere, "First-principles investigation of finite-temperature behavior in small sodium clusters", The Journal of Chemical Physics, vol. 123, p. 164310-164317, 2005. [83]S. M. Ghazi, M.-S. Lee and D. G. Kanhere, "The effects of electronic structure and charged state on thermodynamic properties: An ab initio molecular dynamics investigations on neutral and charged clusters of na[sub 39], na[sub 40], and na[sub 41]", The Journal of Chemical Physics, vol. 128, p. 104701-104707, 2008. [84]W. Fa and J. Dong, "Possible ground-state structure of au[sub 26]: A highly symmetric tubelike cage", The Journal of Chemical Physics, vol. 124, p. 114310-114314, 2006. [85]L. Xiao and L. C. Wang, "From planar to three-dimensional structural transition in gold clusters and the spin-orbit coupling effect", Chemical Physics Letters, vol. 392, p. 452-455, 2004. [86]J. G. Du, X. Y. Sun, D. Q. Meng, P. C. Zhang and G. Jiang, "Geometrical and electronic structures of small w-n (n=2-16) clusters", Journal of Chemical Physics, vol. 131, p., 2009. [87]P. Villars, L. D. Calvert and W. B. Pearson, "Handbook of crystallographic data for intermetallic phases", Acta Crystallographica Section A, vol. 40, p. C444-C444, 1984. [88]M.-X. Chen and X. H. Yan, "A new magic titanium-doped gold cluster and orientation dependent cluster-cluster interaction", The Journal of Chemical Physics, vol. 128, p. 174305-174306, 2008. [89]F. Chen and R. L. Johnston, "Charge transfer driven surface segregation of gold atoms in 13-atom au-ag nanoalloys and its relevance to their structural, optical and electronic properties", Acta Materialia, vol. 56, p. 2374-2380, 2008. [90]R. S. Mulliken, "Electronic population analysis on lcao[single bond]mo molecular wave functions. I", The Journal of Chemical Physics, vol. 23, p. 1833-1840, 1955.
|