|
[1] D.N. de G. Allen and R.V. Southwell, Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder, Quart. J. Mech. Appl. Math., 8, 129, 1955. [2] F. Black and M. Scholes. The pricing of options and corporate liabilities. J. Political Economy, 81:637–659, 1973. [3] G. Courtadon, A more accurate finite difference approximation for the valuation of options, J. Financial Economics Quant. Anal, 17:697–703, 1982. [4] S.I. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6, No.2, 327–343, 1993. [5] J. Hull and A. White, The pricing of options on assets with stochastic volatilities, The Journal of Finance, 42, Issue 2, 281-300, 1987. [6] Y.K. Kwok, Mathematical models of financial derivatives, Springer-Verlag Singapore, Singapore, 1998. [7] J.J.H. Miller and S. Wang, A new non-conforming Petrov-Galerkin method with triangular elements for a singularly perturbed advection-diffusion problem, IMA J. Numer. Anal., 14, 257–276, 1994a. [8] J.J.H. Miller and S. Wang, An exponentially fitted finite element volume method for the numerical solution of 2D unsteady incompressible flow problems, J. Comput. Phys., 115, No.1, 56–64, 1994b. [9] L.C.G. Rogers and D. Tallay, Numerical Methods in Finance, Cambridge University Press, Cambridge, UK, 1997. [10] E. Schwartz, The valuation of warrants: implementing a new approach, J. Financial Economics, 13, 79-93, 1977. [11] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962. [12] S. Wang, A novel exponentially fitted triangular finite element method for an advection-diffusion problem with boundary layers, J. Comp. Phys., 134, 253–260, 1997. [13] S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing, IMA J. Numer. Anal., 24, 699–720, 2004. [14] S. Wang, X.Q. Yang and K.L. Teo, A power penalty method for a linear complementarity problem arising from American option valuation, J. Optimz. Theory App., 129 (2), 227–257, 2006. [15] P. Wilmott, J. Dewynne, and S. Howison. Option pricing: mathematical models and computation. Oxford Financial Press, Oxford, 1993. [16] R. Zvan, P.A. Forsyth and K.R. Vetzal. Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math., 91(2), 199–218, 1998. [17] Y. Achdou & O. Pironneau (2005) Computational Methods for Option Pricing, SIAM, Philadelphia. [18] Angermann L. (2008) Discretization of the Black-Scholes operator with a natural left-hand side boundary condition, Far East J. Appl. Math., 30, 1–41. [19] Angermann L. & Wang S. (2007) Convergence of a fitted finite volume method for European and American Option Valuation, Numerische Mathematik., 106, 1–40. [20] J. Haslinger, M. Miettinen & P.D. Panagiotopoulos (1999) Finite element method for hemivariational inequalities, Kluwer, Dordrecht. [21] A. Kufner (1985) Weighted Sobolev spaces, John Wiley & Sons Inc., New York. [22] J. Franke, W. Harerdle & C. M. Hafner (2004) Statistics of Financial Market, 2nd edn, Springer, Berlin. [23] C.-S. Huang, C.-H. Hung & S. Wang (2006) A Fitted Finite Volume Method for the Valuation of Options on Assets with Stochastic Volatilities, Computing., 77 (3), 297–320. [24] C.-S. Huang, C.-H. Hung & S. Wang (2009) On Convergence of A Fitted Finite Volume Method for the Valuation of Options on Assets with Stochastic Volatilities, IMA J. Numerical Analysis, Advance Access, July 1, doi:10.1093/imanum/drp016.
|