跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/27 07:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:洪丞輝
研究生(外文):Chen-hui Hung
論文名稱:關於隨機股價之選擇權價值之有限體積法
論文名稱(外文):On a Fitted Finite Volume Method for the Valuation of Options on Assets with Stochastic Volatilities
指導教授:黃杰森
指導教授(外文):Chien-Sen Huang
學位類別:博士
校院名稱:國立中山大學
系所名稱:應用數學系研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:54
中文關鍵詞:歐式選擇權價值有限體積法隨機股價波動度Black-Scholes 方程穩定性與收斂性
外文關鍵詞:stability and convergencefinite volume methodEuropean option pricingstochastic volatilityBlack-Scholes equation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:242
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:1
一開始我們先公式化Black-Scholes方程並且表示出它的收斂性. 然後我們找到一個基底函數使得我們得以公式化成Petrov-Galerkin有限元素法. 我們證明這樣的雙線性模式是coercive與連續的. 我們也說這樣的離散解有order h的誤差. 最後我們也用數值模擬了整個二維模型並且與一維模型做比較. 我們也得到這樣的二維模型是滿足M矩陣.
In this dissertation we first formulate the Black-Scholes equation with a tensor (or matrix) diffusion coefficient into a conservative form and present a convergence analysis for the two-dimensional Black-Scholes equation arising in the Hull-White model for pricing European options with stochastic volatility. We formulate a non-conforming Petrov-Galerkin finite element method with each basis function of the trial space being determined by a set of two-point boundary value problems defined on element edges. We show that the bilinear form of the finite element method is coercive and continuous and establish an upper bound of order O(h) on the discretization error of method, where h denotes the mesh parameter of the discretization. We then present a finite volume method for the resulting equation, based on a fitting technique proposed for a one-dimensional Black-Scholes equation. We show that the method is monotone by proving that the system matrix of the discretized equation is an M-matrix. Numerical experiments, performed to demonstrate the usefulness of the method, will be presentd.
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 The Continuous Problem and its Solvability . . .. . 4
2.1 The Continuous Problem . . . . . . . . . . . . . . . . .. . 4
2.2 The Existence and Uniqueness . . . . . . . . . . . . . . . 6
2.2.1 Coercivity of the Bilinear Form B(·, ·; t) . . . . .. . . . 7
2.2.2 Continuity of the Bilinear Form B(·, ·; t) . . . . . . . . 8
3 The Finite Element Method . . . .11
3.1 The Finite Element Formulation of the Discretization Scheme . . . . . 11
3.2 Stability and Error Analysis of the Method . . . . . . 15
3.2.1 Lower Bound for the Bilinear Form B(·, ·) . . . . . 16
3.2.2 Error Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4 The Finite Volume Method. . . . . . . . . 25
4.1 The Formulation for the Flux κ(f) on Different Intervals . . . . . . . . 26
4.2 The Finite Volume System . . . . . . . . . .. . . . . . . . 29
4.3 Boundary Conditions and Payoff Conditions . . . 32
5 Numerical Experiments . . . . . . . . 34
5.1 Ramp Payoff Final Condition . . . . . . . . . . . . . . .. . . 34
5.2 Cash-or-Nothing Final Condition . . . . . . . . . . . . . 37
5.3 Portfolio of Options . . . . . . . . . . . . . . .. . . . . . . 39
5.4 2-D and 1-D Simulations . . . . . . . . . . .. . . . . . . . . 40
6 Conclusions . . . . 45
Bibliography. . . . 46
[1] D.N. de G. Allen and R.V. Southwell, Relaxation methods applied to determine the motion, in two dimensions, of a viscous fluid past a fixed cylinder, Quart. J. Mech. Appl. Math., 8, 129, 1955.
[2] F. Black and M. Scholes. The pricing of options and corporate liabilities. J. Political Economy, 81:637–659, 1973.
[3] G. Courtadon, A more accurate finite difference approximation for the valuation of options, J. Financial Economics Quant. Anal, 17:697–703, 1982.
[4] S.I. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, The Review of Financial Studies, 6, No.2, 327–343, 1993.
[5] J. Hull and A. White, The pricing of options on assets with stochastic volatilities, The Journal of Finance, 42, Issue 2, 281-300, 1987.
[6] Y.K. Kwok, Mathematical models of financial derivatives, Springer-Verlag Singapore, Singapore, 1998.
[7] J.J.H. Miller and S. Wang, A new non-conforming Petrov-Galerkin method with triangular elements for a singularly perturbed advection-diffusion problem, IMA
J. Numer. Anal., 14, 257–276, 1994a.
[8] J.J.H. Miller and S. Wang, An exponentially fitted finite element volume method for the numerical solution of 2D unsteady incompressible flow problems, J. Comput. Phys., 115, No.1, 56–64, 1994b.
[9] L.C.G. Rogers and D. Tallay, Numerical Methods in Finance, Cambridge University Press, Cambridge, UK, 1997.
[10] E. Schwartz, The valuation of warrants: implementing a new approach, J. Financial Economics, 13, 79-93, 1977.
[11] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962.
[12] S. Wang, A novel exponentially fitted triangular finite element method for an advection-diffusion problem with boundary layers, J. Comp. Phys., 134, 253–260, 1997.
[13] S. Wang, A novel fitted finite volume method for the Black-Scholes equation governing option pricing, IMA J. Numer. Anal., 24, 699–720, 2004.
[14] S. Wang, X.Q. Yang and K.L. Teo, A power penalty method for a linear complementarity problem arising from American option valuation, J. Optimz. Theory
App., 129 (2), 227–257, 2006.
[15] P. Wilmott, J. Dewynne, and S. Howison. Option pricing: mathematical models and computation. Oxford Financial Press, Oxford, 1993.
[16] R. Zvan, P.A. Forsyth and K.R. Vetzal. Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math., 91(2), 199–218, 1998.
[17] Y. Achdou & O. Pironneau (2005) Computational Methods for Option Pricing, SIAM, Philadelphia.
[18] Angermann L. (2008) Discretization of the Black-Scholes operator with a natural left-hand side boundary condition, Far East J. Appl. Math., 30, 1–41.
[19] Angermann L. & Wang S. (2007) Convergence of a fitted finite volume method for European and American Option Valuation, Numerische Mathematik., 106, 1–40.
[20] J. Haslinger, M. Miettinen & P.D. Panagiotopoulos (1999) Finite element method for hemivariational inequalities, Kluwer, Dordrecht.
[21] A. Kufner (1985) Weighted Sobolev spaces, John Wiley & Sons Inc., New York.
[22] J. Franke, W. Harerdle & C. M. Hafner (2004) Statistics of Financial Market, 2nd edn, Springer, Berlin.
[23] C.-S. Huang, C.-H. Hung & S. Wang (2006) A Fitted Finite Volume Method for the Valuation of Options on Assets with Stochastic Volatilities, Computing., 77 (3), 297–320.
[24] C.-S. Huang, C.-H. Hung & S. Wang (2009) On Convergence of A Fitted Finite Volume Method for the Valuation of Options on Assets with Stochastic Volatilities, IMA J. Numerical Analysis, Advance Access, July 1, doi:10.1093/imanum/drp016.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top