(3.237.97.64) 您好!臺灣時間:2021/03/05 03:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡協宏
研究生(外文):Hsieh-Hung Tsai
論文名稱:南台灣陸域及鄰近海域受海陸風及東北季風影響之空氣污染物傳輸及擴散研究
論文名稱(外文):Influences of Sea-land Breezes and Northeastern Monsoon on the Transportation and Dispersion of Air Pollutants over Coastal Region in Southern Taiwan
指導教授:袁中新袁中新引用關係
指導教授(外文):Chung-Shin Yuan
學位類別:博士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:253
中文關鍵詞:模式模擬硫轉化率氮轉化率東北季風海陸風酸鹼中和率物化特徵時空分佈
外文關鍵詞:Nitrogen oxidation ratioSulphur oxidation ratioNeutralization ratioNortheastern monsoonSea-land breezesTempospatial distributionPhysicochemical propertiesModel simulation
相關次數:
  • 被引用被引用:16
  • 點閱點閱:552
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在針對南台灣高污染地區之陸域及海域空氣品質加以同步監測,藉以探討不同時期海陸風效應及季節風效應對高雄市空氣污染物累積或長程傳輸之影響情形,並針對採集之懸浮微粒樣本進行物理及化學特性分析,且進一步探討不同化學物種間之相關性,藉以解析不同天氣型態之下,懸浮微粒轉化率及二次氣膠生成情形,並應用空間解析軟體(SURFER)、逆軌跡模式、氣象模式(MM5)、空氣品質模式(CAMx)等進行數值模式解析,繪製空氣污染物濃度分佈圖,藉以探討季節風及海陸風效應對高雄地區陸域及鄰近海域空氣污染物時空變化趨勢之影響。
根據氣象條件及天氣型態分析結果顯示,高雄地區海陸風效應影響期間的主要天氣型態為低壓帶、太平洋高壓及太平洋高壓西伸,而盛行風向為西風、西南風為主;季節風效應影響期間天氣型態為強烈東北季風、標準東北季風、高壓迴流,而盛行風向為西北風、東北風;混合型效應影響期間的天氣型態為颱風外圍環流、微弱東北季風、高壓迴流,此效應期間天氣型態較為複雜,故風向變化也較不固定。在海陸風效應期間,日間空氣污染物受到海風影響由海岸線往內陸傳送,其濃度呈現越來越高的趨勢,夜間則受到陸風效應影響,在高雄外海則出現污染物濃度高值。季節風效應採樣結果顯示,污染氣團明顯受到東北季風影響,將污染物從高雄地區北方傳送過來,使得高雄地區空氣污染物濃度明顯增高。在混合型效應期間,污染物濃度日間時段由於溫度升高,海風環流較為強盛,使得污染物容易受到海風影響,將污染物物往高雄內陸吹拂,至夜間時段溫度降幅較於緩和,主要受到微弱東北季風影響,污染物容易在高屏沿海地區累積。
PM2.5/PM10及懸浮微粒粒徑分佈結果發現,陸域的懸浮微粒均以細微粒為主,而海域的懸浮微粒則以粗微粒為主,在海陸風效應期間懸浮微粒明顯受到海水飛沫影響;而在季節風效應期間懸浮微粒濃度為最高,且不論海、陸域的PM2.5/PM10均較海陸風效應及混合型效應為高。另外,二次水溶性離子(SIA)依序為季節風>混合型>海陸風,且佔PM2.5中水溶性離子之50%左右,PM2.5及PM2.5-10之[NO3-]/[SO42-]比值,以海陸風效應期間之比值為最低,顯示海陸風效應期間主要受到固定污染源影響為最大。而金屬元素成份均以地殼元素Al、Ca、Fe、K等四種成份為主,在季節風效應期間受到東北季風影響,V、Pb、Ni、Zn、Ti 等人為污染物明顯高出許多。另外,在混合型效應期間Fe所佔比例增高,受到微弱東北季風影響,且亦受到當地鋼鐵業排放之影響。在陸域及海域分別以混合型效應及季節風效應為二次有機性氣膠(SOC)佔總有機碳的比例為最多,其結果與OC/EC大於2.2表示容易生成二次氣膠之結果相同,懸浮微粒在陸域之氯損失以季節風效應時為最多,氯損失約為40.28%,而隨著氯損失越多,[Cl-]/[Na+]比值相對也越低。由懸浮微粒酸鹼性判斷結果得知,不論在三種不同天氣狀態之下,PM2.5及PM2.5-10之NR值均小於1,顯示高雄地區陸域及海域之懸浮微粒呈現酸性,PM2.5在高雄地區之SOR均大於0.25,且以季節風效應及混合型效應為最高,推估可能原因為長距離傳輸所致,整體而言,NOR明顯低於SOR,顯示高雄地區主要受到工業污染之影響。
由逆軌跡模式模擬結果顯示,海陸風效應影響期間,污染氣團主要受到海風影響,氣團傳輸軌跡線主要從高雄外海往高雄內陸傳遞;季節風效應影響期間污染氣團傳輸軌跡線明顯受到東北季風影響,由嘉義以北地區向南傳送;另外,在混合型效應影響期間,污染氣團也是由北向南傳遞,但在傳遞過程中會繞經高雄外海再傳送至高雄地區。由MM5氣象模式模擬結果顯示,在海陸風效應影響期間,高雄地區主要受到西南氣流影響,在高雄沿海地區有局部環流產生;在季節風效應影響期間,高雄地區主要受到東北季風影響,並被中央山脈阻隔,在背風效應下,導致高雄地區產生局部環流,對空氣污染物擴散不利;混合型效應影響期間,高雄地區主要受到微弱東北季風影響,此採樣期間屬於季節交換,且高雄地區容易產生局部迴流。由CAMx模式模擬結果顯示,由於受到海陸風效應影響,日間空氣污染物濃度在內陸有高峰值,晚上則受到陸風影響,將污染物吹向高雄外海,使得空氣污染物來回擺盪,造成高雄外海有污染物累積現象;在季節風效應影響期間,空氣污染物主要由高雄北方往南傳遞,且容易累積於高雄沿海地區。另外,從實測值與模擬值相關性分析比較分析,在O3方面相關性以海陸風效應>混合型效應>季節風效應;PM10方面相關性則以季節風效應>混合型效應>海陸風效應。整體而言,實測值與模擬值之相關性屬於中、高度相關以上。

This study investigated the influences of sea-land breezes (SLBs) and northeastern monsoon (NEM) on the transportation and dispersion of air pollutants over coastal region in southern Taiwan. The physicochemical properties of particulate matter (PM) was simultaneously sampled and analyzed at both inland and offshore sites during eight intensive sampling periods. This study further used a SURFER 2-D plotting software, a backward trajectory model, a 3-D meteorological model (MM5), and a comprehensive air quality model (CAMx) to simulate surface wind fields and spatial distribution of air pollutants over the coastal region during the intensive sampling periods of SLBs and NEM.
According to the meteorological condition and the synoptic weather patterns of the observation data showed that the SLBs sampling periods commonly occurred the weather patterns were zone of low pressure, pacific high pressure, and west stretch of the pacific high pressure when the main prevailing wind direction were west wind and southwest wind. During the NEM sampling periods, the weather patterns were strong northeastern monsoon, standard northeastern monsoon, and outflow rebound with high pressure in southern Taiwan, and then the main prevailing wind direction were northwest wind and northeast wind. However, during the MIX sampling periods, the weather patterns were outflow circulation of typhoon, weak northeastern monsoon, and outflow rebound with high pressure, while the wind directions didn’t change regular. Thus, at coastal sites, the sea-land breezes induce an inland transport of air pollutants during the daytime and a seaward return of air pollutants at nighttime, causing a recirculation of air pollutants back to inland regions each day during the SLBs sampling periods. During the NEM sampling period was mainly brought from the northeastern wind which transported air pollutants from the northern region to Kaohsiung metropolitan area.
The results of PM concentration and size distribution indicated that the inland sites had a higher fraction of fine particles (PM2.5), whereas the offshore sites had a higher fraction of coarse particles (PM2.5-10). These phenomena were attributed to the fact that marine aerosols are generally abundant in the coarse particles. PM concentration is relatively higher during the NEM sampling periods than during the SLBs and MIX sampling periods. For PM concentration, the order of secondary inorganic aerosols (SIA) was NEM > MIX > SLBs, while the SIA/Ions ratio of PM2.5 were approximately 50% during sampling periods. The [NO3-]/[SO42-] ratios of PM2.5 and PM2.5-10 during the SLBs sampling periods were always lowest than those during the NEM and MIX sampling periods. It is suggested that the PM concentrations during the SLBs sampling periods were highly influenced by stationary sources emissions. The crustal elements indicated that the Al, Ca, Fe, and K contributed major composition of particles. Artificial metals, such as Mg, Pb, V, and Zn were also enriched in the atmospheric PM during the NEM sampling periods. In addition, the higher concentration of Fe was attributed to local anthropogenic emission and weak northeastern monsoon during the MIX sampling periods. Regardless of inland or offshore sites, a high concentration of secondary organic carbon (SOC) during the NEM and MIX sampling periods was consistent with OC/EC ratio higher than 2.2 indicates the potential formation of secondary aerosols. Chloride deficit of PM at inland sites were lost easily for approximately 40.28% during the NEM sampling periods. Moreover, the lowest [Cl-]/[Na+] ratio occurred during the sampling periods when the chloride deficit was relative high at inland sites. According to the results of neutralization ratio (NR), regardless of the periods (SLBs, NEM, and MIX), the particulates of inland and offshore sites were both acid. During the NEM and MIX sampling periods, sulphur oxidation ratio (SOR) of PM2.5 over coastal region in southern Taiwan were above 0.25. It is suggested that the results of SOR during those sampling periods were highly influenced by long transportation. In addition, the nitrogen oxidation ratio was lower influenced than SOR over coastal region in southern Taiwan. It is suggested that air quality of Kaohsiung metropolitan area were influenced by the industrial source emissions.
During the SLBs sampling period, sea breezes blown in the morning transported the offshore PM10 back to the inland sites in the Kaohsiung metropolitan area. In contrast, the air mass observed during the NEM sampling period was brought to the Kaohsiung metropolitan area mainly by a northerly wind which transported air mass originating in the northern region (i.e. Chiayi counties). The backward trajectory modeling of the MIX sampling periods suggested that the winds were dominated by the Northeastern Monsoon, and as such, likely inhibited the influences of sea-land breezes. Local surface air mass circulation over southern Taiwan obtained from MM5 model influenced by the southwestern monsoon during the SLBs sampling period. The weather in southern Taiwan during the NEM intensive sampling period was occasionally influenced by the Northeastern Monsoon as well as by complex terrain. During the MIX sampling periods, air mass recirculation was frequently observed in the coastal region of southern Taiwan. The results of CAMx model showed that air pollutions were occurred apparent sea breezes in the afternoon and land breezes at night during the SLBs sampling period. During the NEM sampling period, a strong Northeastern Monsoon blew air pollutions from the north to the southern region. We have compared the model simulation with field measured O3 and PM10 concentrations for inland and offshore regions. The order of correlation coefficients of ¬the model simulation and the measurement for O3¬ and PM10 in sampling periods is SLBs>MIX>NEM and NEM>MIX>SLBs, respectively. Overall, the correlation coefficients of the model simulation and the measurement were middle and high correlation.

目 錄
謝誌………………………………………………………………………………………... I
中文摘要………………………………………………………….……..…..…….……… II
英文摘要…………………………………………………………………………………... IV
目錄………………………………………………………….….......................……….…. VII
表目錄……………………………………………………….……...…….………………. XI
圖目錄…………………………………………………….……...……………………….. XIII
第一章 緒論………………………………………………..……..……………………... 1-1
1-1 研究動機……...……….………………….………..….………………………... 1-1
1-2 研究目的…..…………………………….………….…...…………………….... 1-3
1-3 研究範圍及流程………...…………………………….………………………... 1-4
第二章 文獻回顧………………………………………..………..………………..…… 2-1
2-1 綜觀天氣型態分類……………………………………..………………………... 2-1
2-2-1台灣地區天氣型態分類………………………..……..…………………….. 2-1
2-1-2空氣污染物與天氣型態相關研究……………………….………………….. 2-6
2-2 大氣懸浮微粒來源及物化特性…………………………..…..……………….… 2-8
2-2-1 懸浮微粒之來源……………...…………………….…..………………….... 2-8
2-2-2 懸浮微粒之粒徑分佈………………...………………..………………….… 2-9
2-2-3 懸浮微粒之化學組成………………...………………..………………….… 2-10
2-3 高屏地區空氣污染物濃度變化趨勢…………………..…..………………….… 2-13
2-3-1 高屏地區PSI之變化趨勢………………………….…………………….… 2-13
2-3-2 高雄地區氣象資料…………...……..………..…….……………………..… 2-14
2-3-3 高屏地區空氣污染物時空分佈趨勢……….…..…...……........................… 2-19
2-3-4 高屏地區污染源解析……………….………............…………………….… 2-24
2-4 海陸風影響效應………………………...…..…………...…………………….… 2-25
2-4-1 海陸風之形成與機制………………...………..…………………………… 2-25
2-4-2 海陸風效應對空氣品質之影響………...…..…………………………….… 2-27
2-5 季節風影響效應…………………………………..…..…………………….…… 2-29
2-5-1 季節風之形成與機制………………………..…...………………………… 2-29
2-5-2 季節風效應對空氣品質之影響…………………..…….…………………... 2-30
2-6 國內外港區空氣污染物之分佈情形……………..……………………………... 2-30
2-7 空氣品質模式之原理及運用……………………………..…………………....... 2-32
2-7-1 氣團逆軌跡模式…………………………….…...……………………….…. 2-33
2-7-2 CAMx空氣品質………….…………….…….…………………………….... 2-34
2-7-3 MM5氣象模式……………..…………..……………………….…………… 2-35
第三章 研究方法…………………….………………………..……………………..…. 3-1
3-1 高雄地區空氣品質監測站資料分析……...………....…..……………………… 3-1
3-2 陸域與海域空氣污染物採樣規劃…………………….………………………… 3-1
3-3 高雄港區及外海船舶停泊區採樣規劃……………………..…………………... 3-4
3-4 空氣污染物監測儀器方法與原理……………………..…….……………….…. 3-4
3-4-1 二氧化硫分析方法與原理………………………..…….……………….….. 3-5
3-4-2 氮氧化物分析方法與原理……………………..…….………………….….. 3-5
3-4-3 一氧化碳分析方法與原理……………………..…..………………….……. 3-5
3-4-4 臭氧分析方法與原理…………………………..…….……………………... 3-7
3-4-5 碳氫化合物方法與原理……………………………………..……………... 3-8
3-5 懸浮微粒採樣方法……………………………………..…..……………….…… 3-8
3-5-1 雙粒徑分道採樣器(Dichotomous Sampler)……..……………….………… 3-8
3-5-2 微孔均勻沉降衝擊器(Micro-Orifice Uniform Deposit Impactor)…………. 3-10
3-5-3 貝他射線PM10監測儀…………………………………………………….... 3-11
3-6 懸浮微粒化學成份分析方法………………………….………………………… 3-12
3-6-1 水溶性離子成份分析………………………...…..………………………… 3-12
3-6-2 金屬元素成份分析…………………………….........................…………… 3-12
3-6-3 碳成份分析…………………………...…………..……………………….… 3-13
3-7 品保與品管…………………………………………….………............................ 3-14
3-7-1 分析儀器校正及檢查…………………………..……………………....…… 3-14
3-7-2 採樣方法之品保與品管……………………….....……………………….… 3-16
3-7-3 分析方法之品保與品管…………………….…..…………………………... 3-17
3-8 船舶監測模擬測試……………………………….…...…………………………. 3-19
3-8-1 船舶供電儀器測試…………………...……………..………………….…… 3-19
3-8-2 監測儀器搖晃測試………………………….…..…………………………... 3-21
3-9 污染物擴散傳輸解析……………………………..…...………………………… 3-21
3-9-1 逆軌跡分析(Backward Trajectory)…………..……...…………………….… 3-21
3-9-2 MM5氣象模式分析………………………………………..……………….. 3-22
3-9-3 CAMx空氣品質分析………………………………………...……………… 3-24
3-9-4 等濃度分佈圖(Concentration Contour)…………..………………………… 3-28
第四章 結果與討論….…................................................................................................. 4-1
4-1 採樣期間高雄地區風場變化分析……………………………..…………...…… 4-1
4-2 陸域及海域空氣污染物濃度變化趨勢..………..…………….…………............ 4-9
4-2-1 海陸風效應對空氣污染物時空分佈之影響………………………….…… 4-9
4-2-2 季節風效應對空氣污染物時空分佈之影響……...….......................…....... 4-27
4-2-3 混合型效應對空氣污染物時空分佈之影響………………………………. 4-40
4-2-4陸域及海域空氣污染物時空分佈及日夜變化趨勢…………….…………. 4-52
4-3 懸浮微粒物化指紋成份特徵分析…………………………………………….… 4-53
4-3-1 懸浮微粒質量濃度及粒徑分佈變化趨勢…………………...…………….. 4-54
4-3-2 陸域及鄰近海域之水溶性離子成份分析……………...………………….. 4-59
4-3-3 陸域及鄰近海域之金屬元素成份分析……………………………………. 4-68
4-3-4 陸域及鄰近海域之碳成份分析……………………………………………. 4-78
4-3-5 陸域及海域之氯損失分析………………..………………..………………. 4-84
4-3-6 酸鹼中和率、硫轉化率及氮轉化率分析…………………………………. 4-88
4-4 污染氣團傳輸路徑分析…………......................................................................... 4-95
4-4-1 海陸風效應期間污染氣團傳輸路徑…………..……...…………………… 4-95
4-4-2 季節風效應期間污染氣團傳輸路徑……………………...……………….. 4-97
4-4-3 混合型效應期間污染氣團傳輸路徑……………………...……………….. 4-99
4-5 MM5氣象模式模擬鄰近海域及陸域氣象場…………..…...…………….…….. 4-99
4-5-1 MM5氣象模式模擬海陸風效應……………………………..……..………. 4-99
4-5-2 MM5氣象模式模擬季節風效應…………………………….…….…...…… 4-103
4-5-3 MM5氣象模式模擬混合型效應…………………….…………………..…. 4-106
4-5-4 垂直海岸線風場剖面環流探討………………….……...…………………. 4-110
4-6 陸域及鄰近海域及空氣污染物濃度時空分佈模擬..…………........................... 4-112
4-6-1 海陸風效應期間空氣污染物濃度分佈模擬…………………......…………. 4-117
4-6-2 季節風效應期間空氣污染物濃度分佈模擬………………...…...…………. 4-118
4-6-3 混合型效應期間空氣污染物濃度分佈模擬………………...……………… 4-130
4-6-4 模擬值與實測值比較分析結果……………………………………………... 4-133
4-7 高雄港及外海船舶停泊海域空氣品質監測結果………..……………….…….. 4-140
4-7-1 高雄港區空氣污染物濃度分析………………………...………………….. 4-140
4-7-2 高雄外海船舶停泊海域空氣污染物濃度分析………...………………….. 4-145
第五章 結論與建議……………………….…………….………..…………………….. 5-1
5-1 結論………………………………………………………………………………. 5-1
5-2 建議………………………………………………………………………………. 5-3
參考文獻…………………………………………………………………………………... R-1
附錄A 各類天氣型態之綜觀天氣圖……………………………………………………. A-1
附錄B 1998-2009年逐日天氣型態表…………………………………………………… B-1
附錄C 陸域及海域空氣污染物小時濃度值...………………………………………….. C-1
附錄D 空氣污染物等濃度分佈圖…...………………………………………………….. D-1
附錄E 陸域及海域懸浮微粒化學成份……...………………………………………….. E-1
附錄F 外海船舶行徑軌跡圖……………………………………………………………. F-1
附錄G 採樣數據之QA/QC…………………………………………………………….. G-1

表 目 錄
表2-1 大氣懸浮微粒波峰特性及粒徑範圍…………………..……………………….… 2-10
表2-2 高屏空品區PSI>100站日數及指標污染物………..………………...…….……. 2-15
表2-3 高雄市歷年空氣品變化趨勢…………………………..…………………....……. 2-15
表2-4 高雄縣歷年空氣品變化趨勢…………………………………………...………… 2-16
表2-5 屏東縣歷年空氣品變化趨勢…………………………..……………….………… 2-16
表2-6 高雄地區2004~2008年各月份平均氣象資料統計表……………………..…… 2-17
表2-7 高屏地區懸浮微粒污染源貢獻量彙整表………………………….……..…….. 2-26
表2-8 歐美訂定之區域性與國家船舶排放空氣污染物之相關規定………………...… 2-31
表3-1 不同天氣型態海陸域採樣規劃……………………………………..…….……… 3-2
表3-2 氣態污染物環境採樣設備及原理……………………………………..………… 3-5
表3-3 微孔均勻沉降衝擊器截取氣動直徑…………………………….………..……… 3-11
表3-4 元素分析儀操作條件一覽表………………………………….………..………… 3-14
表3-5 分析儀器品質管制表……………………………………………………..……… 3-15
表3-6 分析儀器未經穩壓器監測結果表…………………………………………...…… 3-20
表3-7 分析儀器經穩壓器監測結果表………………………………………………..… 3-20
表3-8 分析儀器經穩壓器及搖晃測試分析結果表………………….…………..……… 3-21
表3-9 CAMx模式所需輸入資料………………………………………………………. 3-28
表4-1 高雄地區氣象條件及天氣型態彙整表………………………….………..……… 4-13
表4-2 八次採樣期間陸域及鄰近海域空氣污染物濃度彙整表………………...……… 4-49
表4-3 採樣期間陸域及鄰近海域空氣污染物日夜間平均濃度彙整表…………….….. 4-55
表4-4 八次採樣期間陸域及鄰近海域懸浮微粒濃度測值…………………………….. 4-60
表4-5 海陸風效應期間陸域及鄰近海域懸浮微粒之水溶性離子濃度彙整表……….. 4-64
表4-6 季節風效應期間陸域及鄰近海域懸浮微粒之水溶性離子濃度彙整表……….. 4-65
表4-7 混合型效應期間陸域及鄰近海域懸浮微粒之水溶性離子濃度彙整表……….. 4-67
表4-8 八次採樣期間陸域及鄰近海域懸浮微粒之SIA彙整分析表………………….. 4-69
表4-9 海陸風效應期間陸域及鄰近海域懸浮微粒之金屬成份濃度彙整表………….. 4-71
表4-10 季節風效應期間陸域及鄰近海域懸浮微粒之金屬成份濃度彙整表…………. 4-73
表4-11 混合型效應期間陸域及鄰近海域懸浮微粒之金屬成份濃度彙整表…………. 4-75
表4-12 八次採樣期間陸域及鄰近海域懸浮微粒中土壤地殼元素濃度彙整表……… 4-77
表4-13 八次採樣期間陸域及鄰近海域懸浮微粒之碳成份濃度彙整表……………… 4-79
表4-14 採樣期間懸浮微粒之POC及SOC彙整表…………………………………… 4-83
表4-15 細微粒之水溶性離子、金屬及碳成份百分比彙整表…………………………. 4-85
表4-16 粗微粒之水溶性離子、金屬及碳成份百分比彙整表………………………….. 4-86
表4-17 八次採樣期間陸域及鄰近海域懸浮微粒之氯損失彙整表……………………. 4-87
表4-18 懸浮微粒之非海鹽硫酸鹽成分及百分比………………………………………. 4-89
表4-19 採樣期間懸浮微粒中和率(NR)之比較關係表………………………………… 4-90
表4-20 採樣期間懸浮微粒硫轉化率(SOR)之比較關係表…………………………….. 4-91
表4-21 採樣期間懸浮微粒氮轉化率(NOR)之比較關係表…………………………….. 4-92
表4-22 台灣地區懸浮微粒之NR、SOR及NOR比較分析表………………………… 4-94
表4-23 採樣期間O3濃度實測值與模擬值相關性分析…..…………………………… 4-138
表4-24 採樣期間PM10濃度實測值與模擬值相關性分析…………………………….. 4-141
表4-25 採樣期間O3濃度實測值與模擬值相對標準偏差分析………………………... 4-143
表4-26 採樣期間PM10濃度實測值與模擬值相對標準偏差分析…………………..… 4-143
表4-27 高雄港第一次空氣品質監測結果表…….…………………….………..……… 4-144
表4-28 高雄港第二次空氣品質監測結果表……..……………………………..……… 4-144
表4-29 高雄港第三次空氣品質監測結果表…….…………………………….…..…… 4-144
表4-30 第一次採樣繞行高雄外海船舶停泊區空氣品質監測結果表………………… 4-145
表4-31 第二次採樣繞行高雄外海船舶停泊區空氣品質監測結果表……..………..… 4-146
表4-32 第三次採樣繞行高雄外海船舶停泊區空氣品質監測結果表……..………..… 4-146
表4-33 三次採樣高雄港區及外海船舶停泊區NO2/NOX比值……………………..… 4-149

圖 目 錄
圖1-1台灣地區空品區不良率日比較圖……………………………….………..……… 1-1
圖1-2 東北季風越過山脈形成下沉運動………………………………………..……… 1-2
圖1-3 環流型態之海陸風效應圖…………………..………………….………………… 1-3
圖1-4 研究執行流程圖………………………………………………………………….. 1-5
圖2-1 典型的大氣懸浮微粒粒徑分佈圖……………………..……………….………… 2-9
圖2-2 台灣地區各空品區歷年空氣品質劣化變化趨勢圖……………………..……… 2-13
圖2-3高屏地區PSI>100站日數百分率季節變化趨勢圖……..…………………….…. 2-14
圖2-4 高雄地區2004年風瑰圖……………………………..…………………….…….. 2-17
圖2-5 高雄地區2005年風瑰圖…………………………………………………………. 2-17
圖2-6 高雄地區2006年風瑰圖……………………………………….……..………….. 2-18
圖2-7 高雄地區2007年風瑰圖………………………………………..…….……..……. 2-18
圖2-8 高雄地區2008年風瑰圖…………………………………….……………..…….. 2-18
圖2-9 大氣混合層高度季節變化趨勢圖………………………….…………………….. 2-19
圖2-10 高雄地區能見度變化趨勢圖(2004~2008年)…………..……………...……….. 2-19
圖2-11 高屏地區2004~2008年O3濃度逐月變化趨勢圖……………………..……… 2-21
圖2-12 高屏地區2004~2008年SO2濃度逐月變化趨勢圖………………………….… 2-21
圖2-13 高屏地區2004~2008年PM10濃度逐月變化趨勢圖……………………….…. 2-22
圖2-14 高屏地區2004~2008年PM2.5濃度逐月變化趨勢圖…………………….….… 2-22
圖2-15 高屏地區2004~2008年CO濃度逐月變化趨勢圖…………………….……… 2-22
圖2-16 高屏地區2004~2008年NO濃度逐月變化趨勢圖……………………….…… 2-23
圖2-17 高屏地區2004~2008年NO2濃度逐月變化趨勢圖……………………...……. 2-23
圖2-18 高屏地區2004~2008年THC濃度逐月變化趨勢圖…………………....……… 2-23
圖2-19 日間海風環流形成機制………….…………………………………..………….. 2-27
圖2-20 冬季及夏季地面天氣及盛行季節風示意圖……………………………………. 2-29
圖3-1 海域及陸域空氣品質採樣位置圖………………………………………...……… 3-2
圖3-2 陸域空氣品質監測使用之自動空氣品監測車………..………………………… 3-3
圖3-3 海域空氣品質監測船舶及船艙分析儀器配置圖……..……………….………… 3-3
圖3-4 監測船舶繞行高雄港區航跡圖………………………………………...………… 3-4
圖3-5 空氣品質自動監測流程圖………………………………………………..……… 3-6
圖3-6 二氧化硫監測儀…………………………………………...……………………… 3-6
圖3-7 氮氧化物監測儀…………………………………………….………..…………… 3-7
圖3-8 ㄧ氧化碳監測儀…………………………………………….…………..………… 3-7
圖3-9 臭氧監測儀………………………………………………….…………..………… 3-8
圖3-10 碳氫化合物監測儀器……………………………………….………...…………. 3-8
圖3-11 雙粒徑分道採樣器示意圖…………………………………….………..……….. 3-9
圖3-12 微孔均勻沉降衝擊器示意圖………………………………….………...………. 3-11
圖3-13 逆軌跡模式原始資料分析計算圖……………………………………..………... 3-22
圖3-14 MM5模式系統架構流程圖……………………………………….…...…….… 3-23
圖4-1 第一次採樣期間高雄地區空品測站之風向變化……………………….…..…… 4-2
圖4-2 第一次採樣期間高雄地區空品測站之風瑰圖………………………….…..…… 4-2
圖4-3 第二次採樣期間高雄地區空品測站之風向變化……………………………...… 4-3
圖4-4 第二次採樣期間高雄地區空品測站之風瑰圖……………………………...…… 4-3
圖4-5 第三次採樣期間高雄地區空品測站之風向變化……………………….…..…… 4-5
圖4-6 第三次採樣期間高雄地區空品測站之風瑰圖……………………………..….… 4-5
圖4-7 第四次採樣期間高雄地區空品測站之風向變化……………..……………….… 4-6
圖4-8 第四次採樣期間高雄地區空品測站之風瑰圖………………..……………….… 4-6
圖4-9 第五次採樣期間高雄地區空品測站之風向變化……………..……………….… 4-7
圖4-10 第五次採樣期間高雄地區空品測站之風瑰圖………………..………………... 4-7
圖4-11 第六次採樣期間高雄地區空品測站之風向變化………………………………. 4-10
圖4-12 第六次採樣期間高雄地區空品測站之風瑰圖……………………………...….. 4-10
圖4-13 第七次採樣期間高雄地區空品測站之風向變化……………........................…. 4-11
圖4-14 第七次採樣期間高雄地區空品測站之風瑰圖………………………………..... 4-11
圖4-15 第八次採樣期間高雄地區空品測站之風向變化………………..……………... 4-12
圖4-16 第八次採樣期間高雄地區空品測站之風瑰圖……………………………..…... 4-12
圖4-17 第一次採樣期間海陸域空氣污染物時間分佈(2006/8/16-18)………………..... 4-15
圖4-18 高雄地區O3等濃度分佈圖(2006/8/16-18)……………..…………………….… 4-16
圖4-19 高雄地區PM10等濃度分佈圖(2006/8/16-18)…………………………..……… 4-17
圖4-20 第五次採樣期間海陸域空氣污染物時間分佈(2007/5/2-4)…........................…. 4-19
圖4-21 高雄地區O3等濃度分佈圖(2007/5/2-4)……………………….…………..…… 4-20
圖4-22 高雄地區PM10等濃度分佈圖(2007/5/2-4)……………………….………..…… 4-21
圖4-23 第八次採樣期間海陸域空氣污染物時間分佈(2009/7/15-17).……………….... 4-24
圖4-24 高雄地區O3等濃度分佈圖(2009/7/15-17)………………..……………….…… 4-25
圖4-25 高雄地區PM10等濃度分佈圖(2009/7/15-17)……………..…………………… 4-26
圖4-26 第三次採樣期間海陸域空氣污染物時間分佈(2007/1/24-26)………………..... 4-28
圖4-27 高雄地區O3等濃度分佈圖(2007/1/24-26)……………..……………….……… 4-29
圖4-28 高雄地區PM10等濃度分佈圖(2007/1/24-26)…………………………...……… 4-30
圖4-29 第四次採樣期間海陸域空氣污染物時間分佈(2007/3/6-8)…………...…...…... 4-33
圖4-30 高雄地區O3等濃度分佈圖(2007/3/6-8)………………..……………….……… 4-34
圖4-31 高雄地區PM10等濃度分佈圖(2007/3/6-8)…………….……………….……… 4-35
圖4-32 第七次採樣期間海陸域空氣污染物時間分佈(2009/3/11-13)…………………. 4-37
圖4-33 高雄地區O3等濃度分佈圖(2009/3/11-13)……………….…………..………… 4-38
圖4-34 高雄地區PM10等濃度分佈圖(2009/3/11-13)………..………………….……… 4-39
圖4-35 第二次採樣期間海陸域空氣污染物時間分佈(2006/11/2-4)………………...… 4-41
圖4-36 高雄地區O3等濃度分佈圖(2006/11/2-4)……………….………………………. 4-42
圖4-37 高雄地區PM10等濃度分佈圖(2006/11/2-4)……………………………………. 4-43
圖4-38 第六次採樣期間海陸域空氣污染物時間分佈(2008/10/30-11/1)…………….... 4-46
圖4-39 高雄地區O3等濃度分佈圖(2008/10/30-11/1)………..…………………..…….. 4-47
圖4-40 高雄地區PM10等濃度分佈圖(2008/10/30-11/1)………..………………..…….. 4-48
圖4-41陸域及鄰近海域空氣污染物濃度比較圖………………………………………. 4-50
圖4-42 陸域及鄰近海域空氣污染物日夜濃度變化趨勢………………………………. 4-56
圖4-43 高雄地區鄰近海域PM10濃度與PM2.5濃度線性圖…………………………… 4-61
圖4-44 八次採樣期間陸域及鄰近海域懸浮微粒粒徑分佈……………………………. 4-62
圖4-45 海陸風效應期間陸域及鄰近海域懸浮微粒之水溶性離子指紋特徵………… 4-64
圖4-46 季節風效應期間陸域及鄰近海域懸浮微粒之水溶性離子指紋特徵………… 4-65
圖4-47 混合型效應期間陸域及鄰近海域懸浮微粒之水溶性離子指紋特徵………… 4-67
圖4-48 八次採樣期間陸域及鄰近海域懸浮微粒之水溶性離子成份及百分比……… 4-69
圖4-49 八次採樣期間陸域及鄰近海域之[NO3-]/[SO42-]比值………………….……… 4-70
圖4-50 海陸風效應期間陸域及鄰近海域懸浮微粒之金屬成份指紋特徵……….…… 4-72
圖4-51 季節風效應期間陸域及鄰近海域懸浮微粒之金屬成份指紋特徵……….…… 4-74
圖4-52 混合型效應期間陸域及鄰近海域懸浮微粒之金屬成份指紋特徵……….…… 4-76
圖4-53 採樣期間陸域及鄰近海域懸浮微粒之金屬元素成份及百分比……………… 4-77
圖4-54 採樣期間陸域及鄰近海域懸浮微粒之碳成份指紋特徵……………………… 4-80
圖4-55 八次採樣期間懸浮微粒之OC與EC相關趨勢及(OC/EC)min圖…………….. 4-81
圖4-56 採樣期間懸浮微粒之POC與SOC成份指紋特徵……………………………. 4-83
圖4-57 細微粒之水溶性離子、金屬元素及碳成份百分比圖…………………………. 4-85
圖4-58 粗微粒之水溶性離子、金屬元素及碳成份百分比圖…………………………. 4-86
圖4-59 懸浮微粒之氯損失及[Cl-]/[Na+]比值分析圖…………………………………... 4-87
圖4-60 採樣期間懸浮微粒之NR比較分析圖…………………………………………. 4-90
圖4-61 採樣期間懸浮微粒之SOR比較分析圖………………………………………… 4-91
圖4-62 採樣期間懸浮微粒之NOR比較分析圖……………………………………….. 4-92
圖4-63 八次採樣期間陸域及鄰近海域懸浮微粒之NR、SOR及NOR三角關係圖… 4-93
圖4-64 海陸風效應期間污染物氣團軌跡圖……………………….…….……..………. 4-96
圖4-65 季節風效應期間污染物氣團軌跡圖…………………………….….…..………. 4-98
圖4-66 混合型效應期間污染物氣團軌跡圖………………………………….…...……. 4-100
圖4-67 MM5巢狀網格模式模擬高屏地區風場圖(2006/8/16-18)…………………..... 4-102
圖4-68 MM5巢狀網格模式模擬高屏地區風場圖(2007/5/2-4)………….………..….. 4-104
圖4-69 MM5巢狀網格模式模擬高屏地區風場圖(2009/7/15-17)….……………….... 4-105
圖4-70 MM5巢狀網格模式模擬高屏地區風場圖(2007/1/24-25)………………….… 4-107
圖4-71 MM5巢狀網格模式模擬高屏地區風場圖(2007/3/6-8)………………………. 4-108
圖4-72 MM5巢狀網格模式模擬高屏地區風場圖(2009/3/11-13)……………………. 4-109
圖4-73 MM5巢狀網格模式模擬高屏地區風場圖(2006/11/2-4)….………………..… 4-111
圖4-74 MM5巢狀網格模式模擬高屏地區風場圖(2008/10/30-11/1)……………….... 4-113
圖4-75 高屏地區大氣模擬之風場剖面圖(2008/10/30-11/01)……...…………………... 4-114
圖4-76 高屏地區大氣模擬之風場剖面圖(2009/3/11-13)…………........................……. 4-115
圖4-77 高屏地區大氣模擬之風場剖面圖(2009/7/15-17)………….…………….…..…. 4-116
圖4-78 CAMx模擬O3濃度時間變化趨勢(2006/8/16-18)……………………………. 4-119
圖4-79 CAMx模擬PM10濃度時間變化趨勢(2006/8/16-18)…………………………. 4-120
圖4-80 CAMx模擬O3濃度時間變化趨勢(2007/5/2-4)…………………………...….. 4-121
圖4-81 CAMx模擬PM10濃度時間變化趨勢(2007/5/2-4)……………………………. 4-122
圖4-82 CAMx模擬O3濃度時間變化趨勢(2009/7/15-17)……………………………. 4-123
圖4-83 CAMx模擬PM10濃度時間變化趨勢(2009/7/15-17)……..……………….…. 4-124
圖4-84 CAMx模擬O3濃度時間變化趨勢(2007/1/24-26)……………………………. 4-126
圖4-85 CAMx模擬PM10濃度時間變化趨勢(2007/1/24-26)…………………………. 4-127
圖4-86 CAMx模擬O3濃度時間變化趨勢(2007/3/6-8)……………………….………. 4-128
圖4-87 CAMx模擬PM10濃度時間變化趨勢(2007/3/6-8)……………………………. 4-129
圖4-88 CAMx模擬O3濃度時間變化趨勢(2009/3/11-13)…………………….………. 4-131
圖4-89 CAMx模擬PM10濃度時間變化趨勢(2009/3/11-13)…………………………. 4-132
圖4-90 CAMx模擬O3濃度時間變化趨勢(2006/11/2-4)…………………….……..… 4-134
圖4-91 CAMx模擬PM10濃度時間變化趨勢(2006/11/2-4)…………………….…..… 4-135
圖4-92 CAMx模擬O3濃度時間變化趨勢(2008/10/30-11/1)………….…….…....….. 4-136
圖4-93 CAMx模擬PM10濃度時間變化趨勢(2008/10/30-11/1)……….…….……….. 4-137
圖4-94 海陸風效應效應O3濃度實測值與模擬值比較分析…………………………… 4-138
圖4-95 季節風效應效應O3濃度實測值與模擬值比較分析…………………………… 4-139
圖4-96 混合型效應效應O3濃度實測值與模擬值比較分析…………………………... 4-139
圖4-97 海陸風效應效應PM10濃度實測值與模擬值比較分析……………………….. 4-141
圖4-98 季節風效應效應PM10濃度實測值與模擬值比較分析……………………….. 4-142
圖4-99 混合型效應效應PM10濃度實測值與模擬值比較分析………………………... 4-142
圖4-100 第一次採樣繞行高雄外海船舶停泊區NO2/NOX比較結果……..……...……. 4-147
圖4-101 第二次採樣繞行高雄外海船舶停泊區NO2/NOX比較結果………..….…….. 4-148
圖4-102 第二次採樣繞行高雄外海船舶停泊區NO2/NOX比較結果………………….. 4-148
圖4-103 三次採樣高雄港區及外海船舶停泊區SO2平均濃度值…………………..… 4-148
圖4-104 三次採樣高雄港區及外海船舶停泊區NOX平均濃度值…………………….. 4-149
圖4-105 三次採樣高雄港區及外海船舶停泊區NO2平均濃度值…………………….. 4-149

Ahrens C.D., 2003, “Meteorology Today, An introduction to Weather, Climate and the Environment 7th ed,” Books/Cole Company, 2003.
Andreani-Aksoyoglu, S., Keller J., Prevot, A.S.H., Baltensperger, U., and Flemming, J., “Modeling of secondary aerosols in Switzerland in summer 2003,” Developments in Environmental Sciences, 6, pp.75-84, 2007.
Behrend, D., Haas R., Pino, D., Gradinarsky, L.P., Keihm, S.J., Schwarz, W., Cucurull, L., and Rius, A., “MM5 derived ZWDs compared to observational results from VLBI, GPS and WVR,” Physics and Chemistry of the Earth, 27, pp.301-308, 2002.
Béranger, K., Siefridt, L., Barnier, B., Garnier, E., and Roquet, H., “Evaluation of operational ECMWF surface freshwater fluxes over oceans during 1991–1997” Journal of Marine Systems, 22, pp.13-36, 1999.
Boix, A., Compañ, V., Jordán, M.M., and Sanfeliu, T., “Vectorial model to study the local breeze regimen and its relationship with SO2 and particulate matter concentrations in the urban area of Castellón, Spain” The Science of the Total Environment, 172, pp.1-15, 1995.
Brönnimann, S., Schuepbach, E., Zanis, P., Buchmann, B., and Wanner, H., “A climatology of regional background ozone at different elevations in Switzerland (1992-1998),” Atmospheric Environment, 34, pp.5191-5198, 2000.
Brümmer, B., Hennemuth, B., Rhodin, A., and Thiemann, S., “Interaction of a cold front with a sea-breeze front observations,” Tellus, 47A, pp.383-402, 1995.
Byun D.W., Kim, S.T., and Kim, S.B., “Evaluation of air quality models for the simulation of a high ozone episode in the Houston metropolitan area,” Atmospheric Environment, 41, pp.837-853, 2007.
Cao, J.J, Lee, S.C., Ho, K.F., Zou, S.C., Fung, K., and Li, Y., “Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China,” Atmospheric Environment, 38, pp.4447-4456, 2004.
Cao, J.J., Shen, Z., Chow, J.C., Qi G., and Watson J.G., “Seasonal variations and sources of mass and chemical composition for PM10 aerosols in Hangzhou, China,” Particuology, 7, pp.161-168, 2009.
Carmichael, G.R., Zhang Y., Chen L.L., Hong M.S., and Ueda, H., “Seasonal variation of aerosol composition at Cheju Island, Korea,” Atmospheric Environment, 30, pp.2407-2416, 1996.
Chan, L.Y., Chan, C.Y., and Qin, Y., “Surface ozone pattern in Hong Kong,” Journal of Applied Meteorology, 37, pp.1153-1165, 1998.
Chellam, S., Kulkarni, P., and Fraser, M.P., “Emissions of organic compound and trace metals in fine particulate matter from motor vehicles: a tunnel study in Houston, Texas,” Journal of the Air & Waste Management Association, 55, pp.60-72, 2005.
Chen, D.S., Cheng, S.Y., Liu L., Chen, T., and Guo, X.R., “An integrated MM5-CMAQ modeling approach for assessing trans-boundary PM10 contribution to the host city of 2008 Olympic summer games-Beijing, China” Atmospheric Environment, 41, pp.1237-1250, 2007.
Cheng, S. and Lam, K.C., “Synoptic typing and its application to the assessment of climatic impact on concentrations of sulfur dioxide and nitrogen oxides in Hong Kong,” Atmospheric Environment, 34, pp.585-594, 2000.
Cheng W.L., “Ozone distribution in coastal central Taiwan under sea-breeze condition,” Atmospheric Environment, 36, pp.3445-3459, 2002.
Cheng, Z.L., Lam, K.S., Chan, L.Y., Wang, T., and Cheng, K.K., “Chemical characteristics of aerosols at coastal station in Hong Kong. I. Seasonal variation of major ions, halogens and mineral dusts between 1995 and 1996” Atmospheric Environment, 34, pp.2771-2783, 2000.
Chien, F.C., “Real-time MM5 modeling for the Taiwan area,” The 7th PSU/NCAR Mesoscale Model Users’ Workshop, pp.108-109, 1997.
Chow, J.C., Watson, J.G., Fujita, E.M., Lu, Z., and Lawson, D.R., “Temporal and spatial variation of PM2.5 and PM10 aerosols in the Southern California Air Quality Study,” Atmospheric Environment, 28, pp.2061-2080, 1994.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal D.H., Crow, D., Kohl S.D., Engelbrecht, J.P., and Green, M.C., “Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational Study” Chemosphere, 54, pp.185-208, 2004.
Colbeck, I. and Harrison, R.M., “Ozone-secondary aerosol-visibility relationships in north-west England,” Science of the Total Environment, 34, pp.87-100, 1984.
Coll, I., Pirovano, G., Lasry, F., Alessandrini, S., Bedogni, M., Costa M., Gabusi, V., Menut L., and Vautard R., “Application and sensitivity analysis of CAMx and CHIMERE air quality models in a coastal area,” Developments in Environmental Sciences, 6, pp.362-373, 2007.
Dongarrà, G., Manno, E., Varrica, D., and Vultaggio, M., “Mass levels, crustal component and trace elements in PM10 in Palermo, Italy,” Atmospheric Environment, 41, pp.7977-7986, 2007.
Engelstaedter, S., Tegen, I., and Washington, R., “North African dust emissions and transport,” Earth-Science Reviews, 79, pp.73-100, 2006.
Fang, G.C., Lee, S.C., Lee, W.J., Cheng, Y., and Lin, I.C., “Characteristics of carbonaceous aerosol at Taichung Harbor, Taiwan during summer and sutumn period of 2005,” Environmental Monitoring & Assessment, 131, pp.501-508, 2007.
Fitzgerald, J.W., “Marine aerosols: A review,” Atmospheric Environment, 25A, pp.533-545, 1991.
He, Z., Kim, Y.J., Ogunjobi, K.O., and Hong, C.S., “Characteristics of PM2.5 species and long-range transport of air masses at Taean background station, South Korea,” Atmospheric Environment, 37, pp.219-230, 2003.
Han, Z., Ueda, H., and An, J., “Evaluation and intercomparison of meteorological predictions by five MM5-PBL parameterizations in combination with three land-surface models,” Atmospheric Environment, 42, pp.233-249, 2008.
Harrison, R.M., Deacon, A.R., Jones, M.R., and Appleby, R.S., “Sources and processes affecting concentrations of PM10 and PM2.5 particulate matter in Birmingham (U.K.),” Atmospheric Environment, 31, pp.4103-4117, 1997.
Hastie, D.R., Narayan J., Schiller, C., Niki, H., Shepson, P.B., Sills, D.M.L., Taylor, P.A., Moroz, W.J., Druummond, J.W., Reid, N., Taylor, R., Roussel, P.B., and Melo, O.T., “Observational evidence for the impact of the lake breeze circulation on ozone concentration in Southern Ontario,” Atmospheric Environment, 33, pp.323-335, 1999.
Hoppel, W.A., Fitzgerald, J.W., Frick, G.M., and Larson, R.E., “Aerosol size distributions and optical properties found in the marine boundary layer over the Atlantic ocean,” Journal of Geophysical Research, 95, pp.3659-3686, 1990.
Hueglin, C., Gehrig, R., Baltensperger, U., Gysel M., Monn,C., and Vonmont, H. “Chemical characterisation of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland,” Atmospheric Environment, 39, pp.637-651, 2005.
Huang, X., Olmez, I., and Aras, N.K., “Emissions of trace elements from motor vehicles: potential marker elements and source composition profile,” Atmospheric Environment, 28, pp.1385-1391, 1994.
Kanayama, S., Yabuki, S., Yanagisawa, F., and Motoyama, R., “The chemical and strontium isotope composition of atmospheric aerosols over Japan: the contribution of long-range-transported Asian dust (Kosa),” Atmospheric Environment, 36, pp.5159-5175, 2002.
Kao, C.Y.J. and Yamada, T., “Numerical simulations of astratocumulus-capped boundary boundary layer observed over land.” Journal of the Atmospheric Sciences, 46, pp.832-848, 1989.
Kerminen, V.M., Pakkanen, T.A., and Hillamo, R.E. “Interactions between inorganic trace gases and supermicrometer particles at a coastal site,” Atmospheric Environment, 31, pp.2753-2765, 1997.
Kerminen, V.M., Teinilä, K., Hillamo, R., and Pakkanen, T., “Substitution of chloride in sea-salt particles by inorganic and organic anions,” Journal of Aerosol Science, 29, pp.929-942, 1998.
Kikuchi Y., Arakawa S., Kimura F., and Shirasaki K., “Numerical study on the effect of mountains on the Land and Sea Breeze circulation in the Kanto District,” Journal of the Meteorological Society of Japan, 59, pp.723-738, 1981.
Kitada T. and Kitagawa, E., “Numerical analysis of the role of sea breeze front on air quality in coastal and inland polluted areas,” Atmospheric Environment 24A, pp.1545-1559, 1990.
Kok, G.L., Lind, J.A., and Fang M., “An airborne study of air quality around the Hong Kong territory,” Journal of Geophysical Research, 102, pp.19043-19057, 1997.
Lam, K.C. and Cheng, S., “A synoptic climatological approach to forecast concen- trations of sulfur dioxide and nitrogen oxides in Hong Kong,” Environmental Pollution, 101, pp.183-191, 1998.
Lee, C.G., Yuan, C.S., Chang, J.C., and Yuan, C., “Effects of Aerosol Species on Atmospheric Visibility in Kaohsiung City, Taiwan,” Journal of the Air & Waste Management Association, 55, pp.1031-1041, 2005.
Lee, D.S., Garland, A., and Fox, A.A., “Atmospheric concentrations of trace elements in urban areas of the United Kingdom,” Atmospheric Environment, 28, pp.2691-2713, 1994.
Lee, S.M., Princevac M., Mitsutomi, S., and Cassmassi, J., “MM5 simulations for air quality modeling: An application to a coastal area with complex terrain,” Atmospheric Environment, 43, pp.447-457, 2009.
Lin, J.J., “Characterization of the major chemical species in PM2.5 in the Kaohsiung City, Taiwan,” Atmospheric Environment, 36, pp.1911-1920, 2002.
Lin, J.J. and Tai, H.S., “Concentrations and distributions of carbonaceous species in ambient particles in Kaohsiung City, Taiwan,” Atmospheric Environment, 35, pp.2627-2636, 2001.
Lin, T.H., “Long-range transport of yellow sand to Taiwan in Spring 2000: observed evidence and simulation,” Atmospheric Environment, 35, pp.5873-5882, 2001.
Liu, K.Y., Wang, Z., and Hsiao, L.F., “A modeling of the sea breeze and its impacts on ozone distribution in northern Taiwan,” Environmental Modelling & Software, 17, pp.21-27, 2002.
Lu, R. and Turco, R.P., “Air pollutant transport in a coastal environment: Part I: Two-dimensional simulations of the sea-breeze and mountain effects. Journal of atmospheric Science, 51, pp.2285-2308, 1995a.
Lu, R. and Turco, R.P., “Air pollutant transport in a coastal environment-II. Three-dimensional simulations over Los Angeles basin,” Atmospheric Environment, 29, pp.1499-1518, 1995b.
Ma, Y. and Lyons, T.J., “Recirculation of coastal urban air pollution under a synoptic scale thermal trough in Perth, Western Australia,” Atmospheric Environment, 37, pp.443-454, 2003.
Ma, C.J., Kasahara, M., Holler, R., and Kamiya, T., “Characteristic of single particles sampled in Japan during the Asia dust-storm period,” Atmospheric Environment, 35, pp.2707-2714, 2001.
Mamane, Y., Perrino, C., Yossef, O., and Catrambone, M., “Source characterization of fine and coarse particles at the East Mediterranean coast,” Atmospheric Environment, 24, pp.6114-6130, 2008.
Man, C.K. and Shih, M.Y., “Identification of sources of PM10 aerosols in Hong Kong by wind trajectory analysis,” Journal of Aerosol Science, 32, pp.1213-1223, 2001.
Marcazzan, G.M., Vaccaro, S., Valli, G., and Vecchi, R., “Characterization of PM10 and PM2.5 particulate matter in the ambient air of Milan, Italy,” Atmospheric Environment, 35, pp.4639-4650, 2001.
Na, K., Sawant, A.A., Song, C., and Cocker III, D.R., “Primary and secondary carbonaceous species in the atmosphere of western riverside county, California,” Atmospheric Environment, 38, pp.1345-1355, 2004.
Nagashima, K., Tada, R., Matsui, H., Irino, T., Tani, A., and Toyoda, S., “Orbital- and millennial-scale variations in Asian dust transport path to the Japan Sea,” Palaeogeography, Palaeoclimatology, Palaeoecology, 247, pp.144-161, 2007.
Oh, I.B., Kim, Y.K., Lee, H.W., and Kim, C.H., “An observational and numerical study of the effects if the late sea breeze on ozone distributions in the Busan metropolitan area, Korea,” Atmospheric Environment, 40, pp.1284-1298, 2006.
Ohta, S. and Okita, T., “A Chemical Characterization of Atmospheric Aerosol in Sapporo,” Atmospheric Environment, 24A, pp.815-822, 1990.
Pont, V. and Fontan, J., “Local and regional contributions to photochemical atmospheric pollution in southern France,” Atmospheric Environment, 34, pp.5209-5223, 2000.
Pottier, J.L., Pryor, S.C., and Banta, R.M., “Synoptic variability related to boundary layer and surface features observed during pacific ’93,” Atmospheric Environment, 31, pp.2163-2173, 1997.
Pakkanen, T.A., “Study of Formation of Coarse Particle Nitrate Aerosol,” Atmospheric Environment, 30, pp.2475-2482, 1996.
Borge, R., Lumbreras, J., Vardoulakis, S., Kassomenos, P., and Rodríguez, E., “Analysis of long-range transport influences on urban PM10 using two-stage atmospheric trajectory clusters” Atmospheric Environment, 41, pp.4434-4450, 2007.
Seinfeld, J.H. and Pandis, S.N., “Atmospheric Chemistry and Physics,” New York: Wiley 1998.
Shrestha, K.L., Kondo A., Kaga, A., and Inoue, Y., “High-resolution modeling and evaluation of ozone air quality of Osaka using MM5-CMAQ system,” Journal of Environmental Sciences, 21, pp.782-789, 2009.
Smith, W.S. and Kao, C.Y.J., “Numerical simulations of the marine stratocumulus-capped boundary layer and its diurnal variation,” Monthly Weather Review, 8, pp.1803-1816, 1996.
Solomon, P.A. and Moyers, J.L., “Use of a high volume dichotomous virtual impactor to estimate light extinction due to carbon and related species in the phoenix haze,” Science of the Total Environment, 36, pp.169-175, 1984.
Tang, I.N., Munkelwitz, H.R., and Davis, J.G., “Aerosols growth studies : preparation and growth measurements of monodisperse salt aerosols,” Journal of Aerosols Science, 8, pp.149-159,1977.
Tesche, T.W., Morris, R., Tonnesen, G., McNally, D., Boylan, J., and Brewer, P., “CMAQ/CAMx annual 2002 performance evaluation over the eastern US,” Atmospheric Environment, 40, pp.4906-4919, 2006.
Tsai, Y.I. and Chen, C.L., “Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan” Atmospheric Environment, 40, pp.4751-4763, 2006.
Tsai, H.H., Ti, T.H. Yuan, C.S., Hung, C.H., and Lin, C., “Effects of sea-land breezes on the spatial and temporal distribution of gaseous air pollutants around the coastal region of southern Taiwan,” Journal of Environmental Engineering and Management, 18, pp.387-396, 2008.
Tsai, H.H., Yuan, C.S., Hung, C.H., and Lin, Y.C., “Comparing physicochemical properties of ambient particulate matter of hot spots in a highly polluted air quality zone”, Aerosol and Air Quality Research, 10, pp.331-344, 2010.
Turnbull, A.B. and Harrison, R.M., “Major component contributions to PM10 composition in the UK atmosphere,” Atmospheric Environment, 34, pp.3129-3137, 2000.
Turpin, B.J., Huntzicker, J.J., Larson, S.M., and Cass, G.R., “Los Angeles summer midday particulate organic carbon: primary and secondary aerosol,” Environmental Science & Technology, 25, pp.1788-1793, 1991.
Turpin, B.J. and Huntzicker, J.J., “Identification of secondary organic aerosol episodes and quantification of primary and secondary organic aerosol concentrations during SCAQR,” Atmospheric Environment, 29, pp.3527-3544, 1995.
Watson, J.G. and Chow, J.C., “Clear Sky Visibility as a Challenge for Society,” Annual Review of Energy and the Environment, 19, pp.241-266, 1994.
Wang, T., Wu, Y.Y., Cheung, T.F., and Lam, K.S., “A study of surface ozone and the relation to complex wind flow in Hong Kong,” Atmospheric Environment, 35, pp.3203-3215, 2001.
Wang, T., Poon, C.N., Kwok, Y.H., and Li, Y.S., “Characterizing the temporal variability and emission patterns of pollution plumes in the Pearl River Delta of China,” Atmospheric Environment, 37, pp.3539-3550, 2003.
Wang, T. and Kwok, Y.H., “Measurement and analysis of a multiday photochemical smog episode in the Pearl River Delta of China,” Journal of Applied Meteorology, 42, pp.404-416, 2003.
Wang, X., Bi, X., Sheng, G., and Fu, J. “Chemical composition and sources of pm10 and pm2.5 aerosols in Guangzhou, China,” Environmental Monitoring and Assessment, 119, pp.425-439, 2006.
Whitby, K.T., Husar, R.B., and Liu, B.Y.H., “The aerosol size distribution of Los Angeles smog, aerosols and atmospheric chemistry,” Hidy, G.M. Ed., Academic Press, New York, pp.237-264, 1972.
Wu, L., Feng, Y., Wu, J., Zhu, T., Bi, X., Han, B., Yang, W., and Yang, Z., “Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China,” Journal of Environmental Sciences, 21, pp.1353-1362, 2009.
Yamada, T. “A numerical simulation of urbanization on the local climate,” Journal of Wind Engineering and Industrial Aerodynamics, 81, pp.1-19, 1999.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., and Ye, B., “The water-soluble ionic composition of PM 2.5 in Shanghai and Beijing, China,” Atmospheric Environment, 36, pp.4223-4234, 2002.
Yuan, C.S., Lee, C.G., Liu, S.H., Chang, J.C., Yuan, C., and Yang H.Y., “Correlation of atmospheric visibility with chemical composition of Kaohsiung aerosols,” Atmospheric Research, 82, pp.663-679, 2006.
Zhang, H., “An assessment of heavy metals contributed by industry in urban atmosphere from Nanjing, China,” Environmental Monitoring Assessment, 154, pp.451-458, 2009.
邱宏城,“台北地區能見度預報模式建立及視覺空氣品質改善策略研擬”,國立中山大學環境工程研究所碩士論文,2009。
黃怡嘉,“中部空品區天氣型對臭氧濃度相關之解析”,東海大學環境科學系碩士論文,2001。
莊銘棟,“從綜觀天氣型態及地形效應探討大台北地區氣膠事件成因”,國立中央大學環境工程研究所博士論文,2008。
白玨玲,“中部地區臭氧濃度特徵與天氣型態相關探討”,東海大學環境科學系碩士論文,1998。
楊宏宇,“台灣地區空氣品質與天氣型態分類相關性研究”,文化大學地理研究所博士論文,1993。
柳中明,“台北盆地臭氧光化污染之氣象環境觀測實驗計劃”,行政院環境保護署研究計劃報告,1994。
柳中明,蘇維中,“區域氣象環境與高臭氧之相關分析”,大氣科學,25,pp.27-49,1997。
林彬龍、李崇德,“台北地區PM10濃度與氣象因數之多變量統計分析”,第七屆空氣污染控制技術研討會論文集,1990。
林能暉,“北中南空品區O3與PM10污染之氣象條件研究”,行政院國家科學委員會/行政院環境保護署科技合作研究計劃報告,2000。
鄭曼婷,“中部地區懸浮微粒特性及污染來源分析”,行政院國家科學委員會研究計劃報告,2000。
陳昭良,“伴隨全台空氣高污染之綜觀天氣分析”,文化大學大氣科學研究所碩士論文,2000。
洪崇軒,“氣象條件對高雄地區空氣品質之預測及分析計畫”,高雄市政府環境保護局研究計劃報告,2001。
劉山豪,“高雄都會區消光係數與能見度量測及細微粒污染源貢獻量解析”,國立中山大學環境工程研究所碩士論文,2000。
葉士鳴,“大氣懸浮微粒含碳成份之分佈及與來源”,國立成功大學環境工程研究所碩士論文,2002。
陳瑞仁、林志忠、張加欽、徐誌宏、陳信儒,“大氣中硝酸鹽及硫酸鹽之粒徑分佈及乾沉降速度”,第十三屆空氣污染控制技術研討會論文集,1996。
樓基中、袁中新,“高雄市都會區酸沉降及懸浮微粒重金屬成份調查研究”,高雄市政府環境保護局研究計劃報告,1995。
黃宗正、李正綱、曾錦富,“台中發電廠南方空氣中懸浮微粒特性研究”,第九屆空氣污染控制技術研討會論文集,1992。
吳義林、蔡德明,“高屏地區大寮測站PM10與PM2.5之組成份特徵研究 ”,一九九八年國際氣膠研討會論文集,1998。
王之群,“台北都會區近三年連續監測及事件氣膠特性”,國立中央大學環境工程研究所碩士論文,2006。
袁中新、蔡協宏、林勳佑、黃明合、林志逢,“高污染空品區室外空氣污染熱區解析與暴露特性分析”,行政院國家科學委員會研究計劃報告,2006。
蔡德明、吳義林,“衍生性氣膠對南高屏地區懸浮微粒之貢獻量”,一九九九年國際氣膠研討會論文集,1999。
鄭曼婷、吳義林、廖崇圜、蔡德明,“南高屏地區空氣污染總量管制研究-子計畫B2:受體模式對粒狀物管制對策方案之模擬分析與綜合評估”,行政院環境保護署研究計劃報告,2000。
陳康興、林鉅富,“高雄地區大氣中懸浮微粒PM2.5特性及來源之探討”,一九九九年國際氣膠研討會論文集,1999。
林銳敏、戴華山,“高雄市大氣懸浮微粒PM2.5及PM2.5~10之化學成分與來源推估”,高雄市政府環境保護局研究計劃報告,1999。
蔣本基,“臺灣北、中部地區受體模式建立與應用研究(一)”,行政院環境保護署研究計畫報告,1993。
張能復,“南高屏地區空氣污染總量管制規劃-E1計畫反應性軌跡模式空氣污染事件之應用與解析”,行政院環境保護署研究計劃報告,1999,EPA-88-FA21-03-0012。
張艮輝,張能復,鄭曼婷,吳義林,吳俊傑,林沛練,望熙榮,謝祝欽,“南高屏地區空氣污染總量管制規劃”,行政院環境保護署研究計劃報告,2000,EPA-89-FA11-03-101。
楊政育、彭柏鈞、蔡俊鴻,“區域性高臭氧與光化反應及大氣傳輸作用之關聯性”,第十八屆空氣污染控制技術研討會論文集,2001。
盧炳利、程萬里,“台灣中部地區海風與臭氧濃度相關性”,第十九屆空氣污染控制技術研討會論文集,2002。
袁中新、袁景嵩、張瑞正、袁菁、張章堂,“台灣南部地區PM2.5及PM10之時空分佈趨勢探討”,第十五屆空氣汙染控制技術研討會論文集,1998。
蔡協宏、底宗鴻、蕭文瑞、蘇明民、袁中新,“東北季風及海陸風對高污染地區空氣品質之影響”,粵港澳城市群氣候與環境研討會論文,2008。
元科科技股份有限公司,“97年度提升高雄世運空氣品質計畫”,高雄市政府環境保護局研究計畫報告,2008。
交通部統計處,“交通部96年交通統計要覽”,2007。
華健,“汽機車排氣污染改善技術研發-源自船舶之空氣污染及其防制”,行政院環境保護署研究計劃報告,1997。
張朝陽,“論綠色港口及航運未來契機”,船舶與海運通訊,62,pp.23-30,2009。
蔡清彥,柯文雄、許武榮,“數值天氣預報”,聯經出版社,1990。
吳俊傑、林沛練, “南高屏地區空氣污染總量管制規劃-空氣品質模式組B3子計畫氣象模式之模擬應用及觀測數據驗證期末報告”,行政院環境保護署研究計劃報告,2001。
林沛練,“南高屏地區空氣污染總量管制規劃-D2子計畫MM5氣象模式模擬及四維同化期末報告”,行政院環境保護署研究計劃報告,1999。
劉乙琦、蔡協宏、覃偉民、袁中新,“2002~2005年台灣地區沙塵暴長程傳輸路徑及沙塵物化特徵比較分析”,第二十五空氣污染控制技術研討會論文集,2007。
何俊和,“台灣北部高臭氧來源分析初探”,淡江大學水資源環境工程學系碩士論文,1999。
郭毓琇,“運用CAMx模式模擬分析中部空品區污染物來源之研究”,中華技術學院土木防災工程研究所碩士論文,2006。
徐玉眉,“海鹽氣膠氯損失之研究”,國立台灣大學環境工程研究所碩士論文,2001。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔