(3.239.33.139) 您好!臺灣時間:2021/03/07 22:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:葉峮甫
研究生(外文):Chun-Fu Yeh
論文名稱:電動力法輔助奈米Fe3O4/S2O82-程序整治受TCE及1,2-DCA污染土壤
論文名稱(外文):Remediation of TCE and 1,2-DCA contaminated soils using electrokinetics-assisted nano Fe3O4/S2O82- processes
指導教授:楊金鐘楊金鐘引用關係
指導教授(外文):Gordon, C.C. Yang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:193
中文關鍵詞:TCE12-DCA電動力法奈米級Fe3O4懸浮液
外文關鍵詞:TCE12-DCAElectrokineticNano-scale Fe3O4
相關次數:
  • 被引用被引用:11
  • 點閱點閱:272
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用奈米級Fe3O4懸浮液活化過硫酸鹽整治受三氯乙烯(TCE)及1,2-二氯乙烷(1,2-DCA)污染之水溶液及飽和土壤,首先,本研究以化學共沉澱法自行合成奈米級Fe3O4,並在晶型鑑定及尺寸分析確定其為奈米級Fe3O4後,利用環境友善性的可溶性澱粉進行分散性試驗,確保其穩定性,結果顯示,於合成過程中添加3 wt%之可溶性澱粉可有效將奈米級Fe3O4分散並且達到一個月以上的懸浮效果。
接著,利用製備完成的奈米級Fe3O4活化過硫酸鹽處理水溶液(DI水、模擬地下水及實際地下水)中的TCE及1,2-DCA,其整治效率皆可達到95 %以上;本研究並偵測利用過硫酸鹽氧化破壞TCE及1,2-DCA所產生的中間產物,其主要的第一階中間產物為cis-1,2-DCA及trans-1,2-DCE,而後,再氧化破壞成第二階中間產物(VC), VC甚至再被氧化破壞成更安全且穩定的物質(乙烷、乙烯及甲烷)。
而後,利用奈米級Fe3O4懸浮液及過硫酸鹽注入結合電動力法處理飽和土壤中的TCE及1,2-DCA。由結果顯示,添加過硫酸鹽可有效降低電極極化現象,進而增加每日電滲透流流量及電流密度;於陰極槽注入過硫酸鹽並產生的硫酸根自由基(SO4-‧),會隨電動力法之離子遷移機制進入土壤管柱並移除標的污染物,相較於陽極槽注入,陰極槽注入有較佳的整治效果;分別於電動力整治系統之陰、陽極槽注入過硫酸鹽及奈米級Fe3O4懸浮液處理受污染的土壤,其移除效率皆可達96 %以上。
為了探討本電動力整治系統是否可有效應用於實際污染場址,本研究特別配製高濃度污染土並予陳化一週,並結合上述電動力整治系統所選擇之最佳條件進行經陳化作用後之試驗。試驗結果發現,標的污染物TCE及1,2-DCA皆可符合土壤污染管制標準,並且在電動力整治系統進行30日後,其中間產物(cis-1,2-DCA、trans-1,2-DCE及VC)皆可有效移除,並低於土壤污染管制標準。
此外,本研究為了證實本電動力整治系統之經濟可行性,因此,將各試驗進行操作費用(藥品費用 + 電費)評估,其結果顯示,操作費用約為8000-17000 元/m3,具有經濟可行性。
The purpose of this work was to investigate the use of nanoscale Fe3O4 as a catalytst for destruction of trichloroethylene (TCE) and 1,2-dichloroethane (1,2-DCA) by persulfate in spiked water and soil. First, nanoscale Fe3O4 was prepared by chemical coprecipitation. X-ray powder diffraction (XRD) was used to confirm the crystal structure; And size identification was performed using the scanning electron microscopy (SEM).
The effectiveness of using 3 wt% soluble starch (SS) to stabilize nanoscale Fe3O4 was also studied. It was found that SS could effectively disperse the nanoparticles for more than one month. Therefore, SS was chosen to prepare the nanoscale Fe3O4 slurry.
The efficiency of nanoscale Fe3O4 as an activator for persulfate remediation of TCE and 1,2-DCA in aqueous solutions (DI water, simulated groundwater, and actual groundwater) was then investigated. The results showed that all test removal efficiency of TCE and 1,2-DCA was more than 95%. Use of the persulfate for destruction of TCE and 1,2-DCA produced some by-products. The primary reaction products were cis-1,2-Dichloroethylene (cis-1,2-DCE) and trans-1,2-Dichloroethylene (trans-1,2-DCE); The secondary daughter prodnct was vinyl chloride (VC). The VC produced is gradually degraded to safer substances (ethene, ethane, and methane).
The nanoscale Fe3O4 slurry and the persulfate injection coupled with the electrokinetic (EK) process was tested for remediation of TCE and 1,2-DCA in saturated soil. The results showed that injection of persulfate into the EK reservoir could decrease the electrode polarization, and increase the electroosmotic flow and current density. When persulfate was injected into the cathode reservoir, the derived sulfate radicals would transfer into the soil compartment by ion migration.
The injection of persulfate into the cathode reservoir was more efficient than injection of persulfate into the anode reservoir. The removal efficiency for TCE and 1,2-DCA was more than 96% in all tests.
The remediation system was assessed for potential application in-situ. Soil was spiked with high TCE and 1,2-DCA and aged for a week. The injection of persulfate and nanoscale Fe3O4 slurry coupled with the EK process was tested for remediation of the aged contaminated soil. The results showed that the target contaminants (TCE and 1,2-DCA) met the Taiwan’s EPA’s control standard. After 30 d of remediation, the by-products (cis-1,2-DCE, trans-1,2-DCE, and VC) had also been removed to below the action limit.
A cost analysis was performed in order to demonstrate the economic feasibility of the remediation method in this study. Operating costs (chemicals + electricity bill) of all tests were assessed. The results showed that the costs were 8000-17000 NT$/m3, which is economically reasonable.
聲明切結書 .............................................................................................i
謝誌 ........................................................................................................ ii
摘要 ....................................................................................................... iii
ABSTRACT ........................................................................................... v
目錄 ...................................................................................................... vii
表目錄 ................................................................................................... ix
圖目錄 ................................................................................................... xi
照片目錄............................................................................................... xv
第一章 前言 .......................................................................................... 1
1.1 研究緣起 ...................................................................................... 1
1.2 研究目的 ...................................................................................... 3
1.3 研究架構 ...................................................................................... 4
第二章 文獻回顧 .................................................................................. 6
2.1 含氯有機化合物 .......................................................................... 6
2.1.1 含氯碳氫有機化合物之特性及危害 ..................................... 6
2.1.2 含氯碳氫有機化合物之污染及管制 ..................................... 7
2.1.3 三氯乙烯(TCE) ..................................................................... 10
2.1.4 1,2-二氯乙烷(1,2-DCA) ..................................................... 11
2.1.5 整治受含氯有機化合物污染之技術應用 ........................... 14
2.2 現地整治技術之原理及發展 .................................................... 15
2.3 現地氧化技術 ............................................................................ 17
2.3.1 高級氧化技術(AOPs)之發展與應用 ................................... 17
2.3.2 過硫酸鹽之反應機制 ........................................................... 22
2.3.3 過硫酸鹽之應用 ................................................................... 25
2.4 電動力法 .................................................................................... 26
2.4.1 電動力整治技術原理 ........................................................... 27
2.4.2 電動力法傳輸與反應機制 ................................................... 28
2.4.3 電動力整治技術之發展 ....................................................... 33
2.5 奈米技術與發展 ........................................................................ 34
2.5.1 四氧化三鐵 ........................................................................... 35
2.5.2 奈米級四氧化三鐵的發展及應用 ....................................... 36
2.5.3 奈米級四氧化三鐵之合成 ................................................... 37
2.6 含氯有機化合物之降解機制 .................................................... 38
第三章 實驗材料與方法 .................................................................... 40
3.1 實驗材料 .................................................................................... 40
3.2 實驗設備 .................................................................................... 43
3.2.1 儀器設備 ............................................................................... 43
3.2.2 電動力管柱之處理系統 ....................................................... 46
3.3 實驗方法 .................................................................................... 48
3.3.1 過硫酸鹽溶液之製備 ........................................................... 48
3.3.2 奈米級Fe3O4之製備 ............................................................ 49
3.3.2.1 粒徑大小與型態及其元素分析 ................................... 50
3.3.2.2 晶型鑑定 ....................................................................... 50
3.3.2.3 利用可溶性澱粉製備奈米材料懸浮液 ....................... 51
3.3.3 模擬地下水之製備 ............................................................... 52
3.3.4 利用奈米級Fe3O4活化過硫酸鹽氧化三氯乙烯及1,2- 二氯乙烷水溶液詴樣之批次詴驗 ........................................ 54
3.3.5 過硫酸鹽及奈米級Fe3O4懸浮液注入結合電動力法 整治模擬受三氯乙烯及1,2-二氯乙烷之飽和土壤之 詴驗 .............................................................................................. 57
3.3.5.1 土壤對三氯乙烯及1,2-二氯乙烷之吸附性詴驗 ....... 58
3.3.5.2人工污染土壤製備與管柱裝填 .................................... 60
3.3.5.3 實驗進行反應過程分析項目 ....................................... 61
3.3.5.4 TCE及1,2-DCA及其副產物檢量線建立 .................. 62
3.3.5.5 實驗進行前後之土壤分析項目 ................................... 63
3.3.6 奈米材料與過硫酸鹽分別注入結合電動力法整治 模擬受三氯乙烯及1,2-二氯乙烷之陳化飽和土壤 之詴驗 .......................................................................................... 70
第四章 結果與討論 ............................................................................ 71
4.1 奈米級Fe3O4之基本特性分析 ................................................. 71
4.1.1. 場發射型掃描式電子顯微鏡(TF SEM) ............................. 71
4.1.2. 環境掃描式電子顯微鏡-能量分散光譜儀分析 ................. 73
4.1.3. X-光繞射儀分析(XRD) ........................................................ 74
4.2 利用可溶性澱粉製備奈米級Fe3O4懸浮液之懸浮性探討..... 75
4.3 土壤之基本特性分析 ................................................................ 81
4.4 利用奈米級Fe3O4活化過硫酸鹽氧化受三氯乙烯及 1,2二氯乙烷污染之模擬水溶液詴樣之批次成效探討 ........... 83
4.4.1利用奈米級Fe3O4活化過硫酸鹽氧化受三氯乙烯及 1,2-二氯乙烷污染於去離子水之批次成效探討 ................... 84
4.4.2利用奈米級Fe3O4活化過硫酸鹽氧化受三氯乙烯及
1,2-二氯乙烷污染於不同地下水之處理成效探討 ............... 87
4.4.3利用奈米級Fe3O4活化過硫酸鹽處理受TCE及 1,2-DCA污染的水樣所產生的中間產物探討 ...................... 93
4.5 土壤對三氯乙烯及1,2-二氯乙烷之吸附性詴驗 .................. 104
4.6 過硫酸鹽注入結合電動力法模擬現地整治飽和土壤中 之三氯乙烯及1,2-二氯乙烷詴驗 ............................................ 107
4.7 過硫酸鹽及奈米級Fe3O4懸浮液注入結合電動力法 模擬現地整治經陳化作用後的飽和土壤中之TCE及 1,2-DCA之詴驗 ........................................................................ 127
4.7.1過硫酸鹽及奈米級Fe3O4懸浮液注入結合電動力法 模擬現地整治經14日陳化作用後的飽和土壤中之 TCE及1,2-DCA之成效探討 .............................................. 129
4.7.2 過硫酸鹽及奈米級Fe3O4懸浮液注入結合電動力法 模擬現地長期整治30日經陳化作用後的飽和 土壤中之TCE及1,2-DCA之成效探討 ................................. 140
4.8 操作費用之評估與比較 .......................................................... 149
第五章 結論與建議 .......................................................................... 152
5.1 結論 .......................................................................................... 152
5.2 建議 .......................................................................................... 155
參考文獻............................................................................................. 156
附錄 ..................................................................................................... 172
碩士在學期間發表之學術論文 ........................................................ 175
1.盧至人、葉玉雯、張峻嘉、蘇世昌、邱明良,“地下水及土壤污染防治策略”,http://www.tcppa.org.tw/bid/8806-3.htm (2000)。
2.USEPA, Ground-water Research-Research Description, EPA/600/9-89/088. Washington, DC. (1989).
3.蔡文田,“含氯溶劑可行減廢技術介紹”,工業污染防治,第四十七期,第 171-182頁 (1993)。
4.李正怡,“利用生物濾床共代謝三氯乙烯效率提升之研究”,碩士學位論文,國立成功大學環境工程研究所,台南市 (1999)。
5.行政院環保署,「土壤及地下水管制標準」,http://www.epa.gov.tw/ (2010)。
6.行政院出國報告書,http://open.nat.gov.tw/OpenFront/report/show_file.jsp?sysId=C09700532&fileNo=001 (2008)。
7.張尊國,“台灣地區土壤污染現況與整治政策分析” ,財團法人國家政策研究基金會-智庫,永續(析)091-021號 (2002)。
8.RCA工殤戰鬥網,http://www.coolloud.org.tw/rca/。
9.行政院環境保護署,「物質安全資料表」,http://flora2.epa.gov.tw/toxicweb/toxicuc4/database/7204.htm (2009)
10.習良孝、何忠陽、羅薪又、宋光中,“土壤與地下水污染整治標準及處理技術之現況評估”,中興工程顧問社,台北市 (2000)。
11.地球公民協會,http://met2007.blogspot.com/ (2010)。
12.Newell, C.J. and J.A. Connor, “Detection and delineation of subsurface DNAPL distribution,”Waterloo Centre for Groundwater Research, 1-18 (1989).
13.Fayaz, L., “In situ chemical reduction (ISCR) of 1,2-DCA in groundwater confidential industrial site, Taiwan, ROC,” Adventus, (2009).
14.Gurtler, R., U. Moller, S. Sommer, H. Miiller, and K. Klemermanns, “Photooxidation of exhaust pollutants,” Chemosphere, 29(9), 1671-1682 (1994).
15.Prager, L. and E. Hartmann, “New route of degradation of chlorinated ethylene exhaust gases from groundwater remediation,” J. Photochem. Photobiol. A: Chemistry, 138 (2),177-183 (2001).
16.Ko, J.H., S. Musson, and T. Townsend, “Destruction of trichloroethylene during hydration of calcium oxide,” Journal of Hazardous Materials, 174, 876-879 (2010).
17.Renato, B., R.B. Maria, and D.A. Laura, “Application of H2O2 lifetime as an indicator of TCE Fenton-like oxidation in soils,” Journal of Hazardous Materials, B10797-102 (2004).
18.陳谷汎、高志明,“土壤及地下水物理/化學復育技術”,台灣土壤及地下水環境保護協會簡訊,第5期,第3-5頁 (2002)。
19.經濟部工業局,“工廠土壤與地下水污染整治技術手冊–石化業” (2003)。
20.Siegrist, R.L., Fundamentals of in situ chemical oxidation (ISCO). Teleconference of in situ treatment of groundwater contaminated with non-aqueous phase liquids, Dec. 10-11, http://www.clu-in.org/ (2002).
21.Amarante, D., “Applying in situ chemical oxidation,” Pollution Engineering, 32, 40-42 (2000).
22.呂冠霖、司洪濤,“高濃度COD廢水氧化處理評析”,經濟部環保技術e報,台北市 (2003)。
23.House, D.A., “Kinetics and mechanism of oxidations by peroxydisulfate,” Chemical Reviews, 62, 185-203 (1962).
24.Kolthoff, I.M., A.I. Medalia, and H.P. Raaen, “The reaction between ferrous iron and peroxides IV. Reaction with potassium persulfate,” Journal of the American Chemical Society, 73, 1733-1739 (1951).
25.Yin, Y. and H.E. Allen, “In situ chemical treatment, technology evaluation report,”ground-water remediation technologies analysis center, Pittsburgh, PA, USA (1999).
26.International Technology and Regulatory Cooperation (ITRC), In situ chemical oxidation. ITEC Training Course for SRP (2002).
27.International Technology and Regulatory Cooperation (ITRC) “Status report on innovative in situ remediation technologies available to treat perchlorate-contaminated groundwater,” National Network for Environmental Management Studies Fellow (2005).
28.Rosario-Ortiz, F.L., E.C. Wert, and S.A. Snyder, “Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater,” Water Research, 44, 1440-1448 (2010).
29.Santana, M.H.P., L.M. Da Silva, A.C. Freitas, J.F.C. Boodts, K.C. Fernandes, and L.A. De Faria, “Application of electrochemically generated ozone to the discoloration and degradation of solutions containing the dye reactive orange 122,” Journal of Hazardous Materials, 164, 10-17 (2009).
30.Qiang, Z., C. Liu, B. Dong, and Y. Zhang, “Degradation mechanism of alachlor during direct ozonation and O3/H2O2 advanced oxidation process,” Chemosphere , 78, 517-526 (2010).
31.Gryzenia, J., D. Cassidy, and D. Hampton, “Production and accumulation of surfactants during the chemical oxidation of PAH in soil,” Chemosphere, 77, 540-545 (2009).
32.Tsai, T.T., C.M. Kao, and A. Hong, “Treatment of tetrachloroethylene-contaminated groundwater by surfactant-enhanced persulfate/BOF slag oxidation—A laboratory feasibility study,” Journal of Hazardous Materials, 171, 571-576 (2009).
33.Goulden, P.D. and D.H.J. Anthony, “Kinetics of uncatalyzed peroxydisulfate oxidation of organic material in fresh water,” Analytical Chemistry, 50(7), 953-958 (1978).
34.FMC Corporation, “Persulfates Technical Information,” Philadelphia, PA, USA (1998).
35.Liang, C.J., Z.S. Wang, and C.J. Bruell, “Influence of pH in persulfate oxidation of TCE at ambient temperatures,” Chemosphere, 66, 106-113 (2007).
36.陳吉欽,“EDTA螯合三價鐵活化過硫酸鹽氧化三氯乙烯”,碩士學位論文,國立中興大學環境工程研究所 (2007)。
37.Block, P.A., R.A. Brown, and D. Robinson, “Novel activation technologies for sodium persulfate in situ chemical oxidation,” Proceedings of the Fourth International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA (2004).
38.Liang, C.J. and C.J. Bruell, “Thermally activated persulfate oxidation of trichloroethylene: experimental investigation of reaction orders,” Industrial & Engineering Chemistry Research, 47, 2912-2918 (2008).
39.Behrman, E.J. and D.H. Dean, “Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (Persulfate) in polyacrylamide gel electrophoresis,” Journal of High Resolution Chromatography. B 723, 325-326 (1999).
40.Li, S.X., D. Wei, N.K. Mak, Z.W. Cai, X.R. Xu, H.B. Li, and Y. Jiang, “Degradation of diphenylamine by persulfate: Performance optimization, kinetics and mechanism,” Journal of Hazardous Materials, 164, 26-31 (2009).
41.Xu, X., Q.F. Ye, T.M. Tang, and D.H. Wang, “Hg0 oxidative absorption by K2S2O8 solution catalyzed by Ag+ and Cu2+,” Journal of Hazardous Materials 158, 410-416 (2008).
42.Liang, C.J., Z.S. Wang, and N. Mohanty, “Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20 °C,” The Science of the Total Environment, 370, 271-277 (2006).
43.USEPA, Superfund Innovative Technology Evaluation Program, Technology Profiles 10th Ed., EPA/540/R-99/500a, 1, 194-195; 202-203; 224-225 (1999).
44.Acar, Y.B. and A.N. Alshawabkeh, “Principles of electrokinetic remediation,” Environmental Science & Technology, 27(13), 2638-2647 (1993).
45.Hanay, O., H. Hasar and N.N. Kocer, “Effect of EDTA as washing solution on removing of heavy metals from sewage sludge by electrokinetic,” Journal of Hazardous Materials, 169, 703-710 (2009).
46.楊金鐘,“於多孔隙介質中的奈米顆粒懸浮液傳輸法”,中華民國專利證書發明第I316050號 (2009)。
47.廖文彬、蔡鎮謙、黃瑞淵、郭韋廷,“以氫氧化鈉及醋酸為電動力操作液去除土壤中氯酚污染物之研究”,中華民國環境工程學會2009土壤與地下水研討會,雲林縣 (2009)。
48.Mulligan, C.N., R.N. Yang, and B.F. Gibbs, “An evaluation of technologies for the heavy metal remediation of dredged sediment,” Journal of Hazardous Materials, 55, 1-22 (1997).
49.Vane, L.M. and G.M. Zang, “Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: implications for electro-kinetic soil remediation processes,” Journal of Hazardous Materials, 55, 1-22 (1997).
50.Acar, Y.B., R.J. Gale, A.N. Alshawabkeh, R.E. Marks, S. Puppala, M. Bicka, and R. Parker, “Electrokinetic remediation:basics and technology status,” Journal of Hazardous Materials, 40(2), 117-137 (1995).
51.劉永章,葛煥彰,“電動力現象的基本理論”化工,45(2),77-83 (1998)。
52.Pamukcu, S., and J.K. Wittle, ‘‘Electrokinetically enhanced in situ soil decontamination,’’ Remediation of Hazardous Waste Contaminated Soils, D. L. Wise and D. J. Trantolo, Eds., Marcel Dekker, New York, 245-298 (1994).
53.Kim, S.O., S.H. Moon, K.W. Kim, and S.T. Yun, “Pilot scale study on the ex situ electrokinetic removal of heavy metal from municipal wastewater sludge,” Water Research, 36, 4765-4774 (2002).
54.Chung., H.I. and B.H. Kang, “Lead removal from contaminated marine clay by electrokinetic soil decontamination,” Engineering Geology, 53, 139-150 (1999).
55.Virkutyte, J., M. Sillanpaa, and P. Latostenmaa, “Electrokinetic soil remediation critical overview,” The Science of the Total Environment 289, 97-121 (2002).
56.Puppala, K.S., A.N. Alshawabkeh, Y.B. Acar, R.J. Gale, and M. Bricka, “Enhanced electrokinetic remediation of high sorption capacity soil,” Journal of Hazardous Materials, 55, 203-220 (1997).
57.Yeager, E., “Electrocatalysts for O2 reduction,” Electrochemica Acta, 29(11), 1527-1534 (1984).
58.Oloman, C. and A.P. Watkinson, “Hydrogen peroxide production in trickle-bed electrochemical reactors,” Journal of Electrochemical Society, 9(1), 117-128 (1979).
59.林舜隆,“利用電動力處理人工合成重金屬污染土壤之研究”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (1995)。
60.Shapiro, A.P., and R.F. Probstein, “Removal of contaminants from saturated clay by electro-osmosis,” Environmental Science and Technology, 27(13), 283-291 (1993).
61.劉奇岳,“電動力-Fenton法現地處理受三氯乙烯及4-氯酚污染土壤之最佳操作條件探討”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (1999)。
62.Giannis, A., A. Nikolaou, D. Pentari, and E. Gidarakos, “Chelating agent-assisted electrokinetic removal of cadmium, lead and copper from contaminated soils,” Environmental Pollution, 157, 3379-3386 (2009).
63.Pazos, M., S. Gouveia, M.A. Sanroman, and C. Cameselle, “Electromigration of Mn, Fe, Cu and Zn with citric acid in contaminated clay,” Journal of Environmental Science and Health Part A, 43, 823-831 (2008).
64.Cao, G.Z., Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Impress College Press, London (2003).
65.徐國財、張立德,“奈米複合材料”,五南圖書出版社股份有限公司,台北市 (2004)。
66.曹盛茂、關長斌、徐甲強,“奈米材料導論”,學富文化事業有限公司,台北市 (2002)。
67.施周、張文輝,“環境奈米技術”,五南圖書出版社股份有限公司,台北市 (2006)。
68.Camras, M., “Chairman’s report 1953-1954,” Transactions of the IRE Professional Group on Audio, 2(3), 71 (1954).
69.孫中溪、郭淑雲,“奈米四氧化三鐵表面酸鹼性質研究”,高等學校化學學報,第二十七卷,第七期,第1351-1354頁,中國(2006)。
70.彭子峻,“奈米級[Fe3O4]MgO於地下水環境中與三氯乙烯之反應行為探討”,碩士學位論文,國立中山大學環境工程研究所 (2008)。
71.Sen, T., A. Sebastianelli, and I.J. Bruce, “Mesoporous silica-magnetite nanocomposite: fabrication and applications in magnetic bioseparations,” Journel of the American Chemical Society, 128, 7130-7131 (2006).
72.Ohe, K., Y. Tagai, S. Nakamura, T. Oshima, and Y. Baba, “Adsorption behavior of arsenic(III) and arsenic(V) using magnetite,” Journal of Chemical Engineering of Japan, 38, 671-676 (2005).
73.Chang, Y.C., and D.H. Chen, “Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 maganetic nanoparticles for removal of Cu(II) ions,” Journal of Colloid and Interface Science, 283, 446-451 (2005).
74.Zhang, S.X., X.L. Zhao, H.Y. Niu, Y.L. Shi, Y.Q. Cai, and G.B. Jiang, “Superparamagnetic Fe3O4 nanoparticles as catalysts for the catalytic oxidation of phenolic and aniline compound,” Journal of Hazardous Materials, 167, 560-566 (2009).
75.Wang, S.H., C. Wang, B. Zhang, Z. Sun, Z. Li, X. Jiang, and X. Bai, “Preparation of Fe3O4/PVA nanofibers via combining in-situ composite with electrospinning,” Materials Letters, 64, 9-11 (2010).
76.USEPA, “In situ treatment of soil and groundwater contaminated with chromium,” Technical Resource Guide, Washington, D.C. (2000).
77.Kim, D.K., Y. Zhang, J. Kehr, T. Klason, B. Bjelke, and M. Muhammed, “Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain,” Journal of Magnetism and Magnetic Materials, 225, 256-261 (2001).
78.羅大倫,張家耀,“微奈米材料的綠色合成法”,中國化學學誌,第六十五卷,第四期,第409-418頁,台北市 (2007)。
79.Roberts, A.L., L.A. Totten, W.A. Arnold, D.R. Burris and T.J. Campbell, “Reductive elimination of chilorinated ethylene in reaction with zero-valent metals,” Environmental Science & Technology, 30(8), 2654-2659 (1996).
80.Arnold, W.A. and A.L. Roberts, “Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles,” Environmental Science & Technology, 34(9), 1794-1805 (2000).
81.Campbell, T.J., D.R. Burris, A.L. Robert, and J.R. Wells, “Trichloroethylene and tetrachloroethylene reduction in a metallic iron-water-vapor batch system,” Environmental Toxicology and Chemistry, 16(4), 625-630 (1997).
82.Rivas, B.D., R.L. Fonseca, J.R.G. Velasco, and J.I.G. Ortiz, “On the mechanism of the catalytic destruction of 1,2-dichloroethane over Ce/Zr mixed oxide catalysts,” Journal of Molecular Catalysis A: Chemical, 278, 181-188 (2007).
83.Aranzabal, A., J.A.G. Marcos, M.R. Sa’ez, J.R.G Velasco, M. Guillemot, and P. Magnoux, “Stability of protonic zeolites in the catalytic oxidation of chlorinated VOCs (1,2-dichloroethane),” Applied Catalysis B: Environmental, 88, 533-541 (2009).
84.Feijen-Jeurissen M.M.R., J.J. Jorna, B.E. Nieuwenhuys, G. Sinquin, C. Petit, and J.-P. Hindermann, “Mechanism of catalytic destruction of 1,2-dichloroethane and trichloroethylene over γ-Al2O3 and γ-Al2O3 supported chromium and palladium catalysts,” Catalysis Today 54, 65 (1999).
85.Kolthoff, I.M., and R. Belcher, Volumetric Analysis, Volume III, Titration Methods: Oxidation-Reduction Reactionns, John Wiley & Sons, Inc., New York (1957).
86.Mehta, R.V., R.V. Upadhyay, S.W. Charles, and C.N. Ramchand, “Direct binding of protein to magnetic particles,” Biotechnology Techniques, 11, 493-496 (1997).
87.洪志雄,“奈米鐵粉結合電動力法處理含硝酸鹽土壤之研究”,博士學位論文,國立中山大學環境工程研究所,高雄市 (2007)。
88.吳明諺,“奈米級Fe3O4及[Fe3O4]MgO懸浮液注入結合電動力法整治飽和土壤中NO3-及Cr6+之反應行為探討”,碩士學位論文,國立中山大學環境工程研究所,高雄市 (2010)。
89.Yang, G.C.C, H.C. Tu, and C.H. Hung, “Stability of nanoiron slurries and their transport in the subsurface environment,” Separation and Purification Technology, 58, 166-172 (2007).
90.華夏中醫網,http://www.tcmclub.com/index.php/thread/view/id-1783 (2010)。
91.Ball, R.E., A. Chake, J.O. Edwards, and G. Levey, “ Mechanism of oxidation of nitrogen nucleophiles by peroxodisulfate ion: Nitrate ion and ammonia,” Inorganica Chimica Acta, 99, 49-58 (1985).
92.張永宜,“乳化奈米級零價鐵處理水溶液之三氯乙烯”,碩士學位論文,國立中山大學環境工程研究所 (2007)。
93.ASTM, “Standard test method for specific gravity of soil,” ASTM D854-83 (1983).
94.行政院環保署環境檢驗所,「土壤中酸鹼值測定方法」,NIEA S410. 60T (1995)。
95.行政院環保署環境檢驗所,「土壤水份含量測定方法-重量法」,NIEA S280. 60T (1995)。
96.林晉卿、楊秋忠、林宏誌、黃山內,“三種綠肥在浸水土壤可溶性有機碳的變化”,台南區研究改良場農業彙報,第47期,第17-30頁 (2006)。
97. Head, K.H., Manual of Soil Laboratory Testing, Volume 1:Soil Classification and Compaction Tests, Pentech Press Limited, Plymonth, Devon (1992).
98.行政院環保署環境檢驗所,「土壤中陽離子交換容量-醋酸鈉法」,NIEAS202. 60A (1995)。
99.Somasundaran, P., Fine Particles Processing-Volume 1, Society of Mining Engineers of AIME, 652-665, New York (1990).
100.張德光, “結合鈀化奈米鐵粉懸浮液與電動力法處理地下環境介質中之三氯乙烯”,碩士學位論文,國立中山大學環境工程研究所 (2005)。
101. 施明智,“食物學原理”,第六章,穀類與澱粉,第147-158頁 (1996)。
102. Liang, C.J., I.L. Lee, I.Y. Hsu, C.P. Liang, and Y.L. Lin, “Persulfate oxidation of trichloroethylene with and without iron activation in porous media,” Chemosphere, 70, 426-435 (2008).
103. Huang, K.C., Z.Q. Zhao, G.E. Hoag, A. Dahmani, and P.A. Block, “Degradation of volatile organic compounds with thermally activated persulfate oxidation,” Chemosphere, 61, 551-560 (2005).
104. 涂秀娟,“奈米級零價鐵懸浮液之應用性探討:不同環境氣氛下對於水溶液中TCE之降解反應途徑與成效、在土體中之傳輸現象及對菌落數之影響”,碩士學位論文,國立中山大學環境工程研究所 (2007)。
105. 洪旭文、劉俊延、連雅棉及林財富,“過硫酸鹽氧化水中有機污染物之介紹”,台灣土壤及地下水環境保護協會簡訊,第33期,第13-17頁 (2009)。
106. USEPA, “Engineered approaches to in situ bioremediation of chlorinated solvents:fundamentals and field application”, EPA 542-R-00-008, 71-74 (2000).
107.行政院環保署,“列管場址查詢”, http://sgw.epa.gov.tw/public/0401.asp (2010).
108. Haroun, M., G.V. Chilingar, and S. Pamukcu, “The efficacy of using electrokinetic transport in highly-contaminated offshore sediments,” Journal of Applied Electrochemistry, 40, 1131-1138 (2010).
109. Yeo, S.D., E. Tuncer, and A. Akgerman, “Adsorption of volatile organic compounds on soil and prediction of desorption breakthroughs,” Separation Science and Technology, 32, 2497-2512 (1997).
110. 台灣電力公司,“公告電價表”,http://www.cogen.org.tw/doc%5Cnew%20service%5C4-17%E5%8F%B0%E7%81%A3%E9%9B%BB%E5%8A%9B%E5%85%AC%E5%8F%B8%E9%9B%BB%E5%83%B9%E8%A1%A8%E8%AA%AA%E6%98%8E%E6%9B%B8.htm (2010)。
111. USEPA, “Cost estimate for selected remedy,” http://www.epa.gov/region8/superfund/mt/lockwood_solvents/AppendixA.pdf (2005).
112. Wilson, G., “Nanotechnology Applications for Remediation: Cost-Effective and Rapid Technologies; Removal of Contaminants From Soil, Ground Water; and Aqueous Environments,” http://www.epa.gov/ncer/publications/workshop/8-18-04/pdf/greg_wilson.pdf (2004).
113. USEPA, “ Remediation Case Studies: In Situ Soil Treatment Technologies (Soil Vapor Extraction, Thermal Processes),” EPA 542-R-98-012, 6-10 (1998).
114. Metcalf and Eddy, “Wastewater Engineering: Treatment, Disposal, Reuse,” 3rd ed., McGraw-Hill, Inc., New York, 1045 (1991).
115. 王智龍,“觀湖大樓地下水水質調查”,高雄縣鳥松鄉 (2009)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 奈米級零價鐵懸浮液注入結合電動力法產生類-Fenton反應整治模擬地下環境中As(III)之研究
2. 奈米級Fe3O4及[Fe3O4]MgO懸浮液注入結合電動力法整治飽和土壤中NO3−及Cr6+之反應行為探討
3. 奈米級[Fe3O4]MgO於地下水環境中與三氯乙烯之反應行為探討
4. 奈米級Fe3O4及[Fe3O4]MgO與模擬地下水中不同無機污染物(NO3-、Cd2+及Cr6+)之反應行為研究
5. 奈米級零價鐵懸浮液之應用性探討:不同環境氣氛下對於水溶液中TCE之降解反應途徑與成效、在土體中之傳輸現象及對菌落數之影響
6. 奈米複合金屬製備及其對土壤/地下水污染整治應用之研究
7. 奈米鐵粉結合電動力法處理含硝酸鹽土壤之研究
8. 電動力法-Fenton法-催化性鐵粉牆組合技術現地模場整治受含氯有機物污染之場址
9. 乳化奈米級零價鐵處理水溶液中之三氯乙烯
10. 結合鈀化奈米鐵粉懸浮液與電動力法處理地下環境介質中之三氯乙烯
11. 電動力-Fenton法現地處理受三氯乙烯及4-氯酚污染土壤之最佳操作條件探討
12. 利用TMCS表面改質管狀陶瓷膜結合同步電混凝/電過濾程序去除水中之砷及過氯酸鹽
13. 利用二種不同孔徑之單一管狀陶瓷膜結合同步電混凝/電過濾程序回收再利用加工出口區二種放流水及晶背研磨廢水之可行性研究
14. 研究不同萃取方法對土壤中銅的去除機制及電動力法的處理效率
 
系統版面圖檔 系統版面圖檔