(3.238.186.43) 您好!臺灣時間:2021/02/28 12:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王柏荃
研究生(外文):Bo-Cyuan Wang
論文名稱:摻鉻光纖材料與光學特性之研究
論文名稱(外文):The Study of Material and Optical Properties for Cr-doped Fibers
指導教授:鄭木海
指導教授(外文):Wood-Hi Cheng
學位類別:碩士
校院名稱:國立中山大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:78
中文關鍵詞:摻鉻光纖損耗螢光
外文關鍵詞:fluorescencelossCDF
相關次數:
  • 被引用被引用:1
  • 點閱點閱:134
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著光通訊快速發展,消除OH-離子在光纖中的吸收,使波長1.3 ~ 1.6 μm低損耗波段能被使用,現今商業化的摻鉺光纖放大器,操作頻寬為70 nm,因而促進寬頻光纖放大器的研究。將鉻離子摻雜在特定基材作為增益介質,已被証實能在近紅外光波段產生300 nm的寬頻輻射,具有研製寬頻放大器的價值。
本研究針對抽絲塔製作的摻鉻光纖,量測其光學性質與材料特性,比較各種預型體設計與製程參數,探討特性。在管中棒製程中,波長1550 nm損耗最低為0.08 dB/cm,觀察其纖芯大部分組成為非晶體結構,殘存少部分γ-Al2O3晶體結構,材料組成中SiO2占了84%。在改良式管中棒製程中,波長1550 nm損耗最低為0.03 dB/cm,然而上述兩類摻鉻光纖的螢光仍嫌微弱。在管中粉製程中,波長1550 nm損耗最低為0.33 dB/cm,但可成功觀察到功率密度為6 nW/10nm,3dB頻譜波長範圍為800 ~ 1000 nm的自發性輻射。由實驗結果分析,摻雜鉻離子基材結構的改變,是影響自發性輻射頻譜特性的原因。
未來將研發低損耗的摻鉻光纖,量測光纖中鉻離子的吸收波段、分析纖芯組成與自發性輻射頻譜的關係,以期有助於抽絲製程的最佳化,並提升自發性輻射強度使摻鉻光纖擁有潛力應用於光纖雷射與超寬頻光纖放大器。
With the rapid growth of optical telecommunication, the low-loss windows from 1.3 to 1.6 μm are available by using the technology of dry fiber fabrication. The operation range such as commercial Er-doped fiber amplifiers (EDFAs) is only 70 nm, so it is interesting to develop the broadband fiber amplifiers. The Cr ions classified into transition metals are doped in specific host materials to be a gain medium. The spectra near infrared range have shown 300 nm.
In this study, we measure and develop the material and optical properties of Cr-doped fibers (CDFs) fabricated by drawing-tower technology. In the fabrication of CDFs using rod-in-tube (RIT), the smallest loss at 1550 nm is 0.08 dB/cm. The composition of core is 84% SiO2 and the structure is almost amorphous, but there is a little γ-Al2O3 nano-crystalline structure. In the fabrication of CDFs using modified RIT (MRIT), the smallest loss is 0.03 dB/cm. Both of CDFs fabricated by RIT and MRIT, the fluorescence intensity is weak. In the fabrication of CDFs using powder-in-tube (PIT), the smallest loss is 0.33 dB/cm. The 3dB emission spectrum is from 0.8 to 1 μm and power density is 6 nW/10nm. The profile of spectra is difference because of Cr ions in distorted structure which allowed a wide distribution of sites.
In the future, measure absorption spectra and analyze the core’s composition dependence of the emission of CDFs to provide fabrication optimization. Promoting the spontaneous emission intensity makes CDFs for novel fiber lasers and broadband fiber amplifiers.
中文摘要
英文摘要
致 謝
內容目錄 i
圖目錄 iii
表目錄 vi
第一章 緒 論 1
第二章 摻鉻晶體的特性 5
2.1 過渡金屬離子之簡介 5
2.1.1 三價鉻離子在晶體中之特性 8
2.1.2 四價鉻離子在晶體中之特性 10
2.2 摻鉻釔鋁石榴石特性 13
第三章 摻鉻光纖特性量測 20
3.1 摻鉻光纖抽絲塔製程 20
3.2 摻鉻光纖特性量測架構 23
3.2.1 摻鉻光纖之樣品準備 23
3.2.2 摻鉻光纖之損耗量測 24
3.2.3 摻鉻光纖之自發性輻射頻譜 27
3.2.4 摻鉻光纖之EPMA成份分析 31
3.2.5 摻鉻光纖之微結構觀察 32
第四章 不同製程之掺鉻光纖特性量測 35
4.1 管中棒製程的摻鉻光纖特性 35
4.2 改良式管中棒製程的摻鉻光纖特性 47
4.3 管中粉製程的摻鉻光纖特性 52
第五章 結論與討論 57
5.1 結 論 57
5.2 討 論 58
參考文獻 60

[1]R.J. Mears, L. Reekie, I.M. Jauncey and D. N. Payne, “Low-noise erbium-doped fibre amplifier operating at 1.54μm,’’ Electronics Letters, Vol 23, pp.1026-1028, 1987.
[2]E. Desurvire, J. Simpson, and P.C. Becker, “High-gain erbium-doped traveling-wave fiber amplifier,’’ Optics Letters, Vol. 12, pp. 888–890, 1987.
[3]E. Desurvire, “Erbium-Doped Fiber Amplifiers: Principles and Applications,” Ch. 4, New York: Wiley, 1994.
[4]E. Desurvire, J. R. Simpson, “Amplification of spontaneous emission in erbium-doped single-modefibers,” Vol. 7, pp. 835-845, 1989.
[5]J. B. Rosolem, A. A. Juriollo, R. Arradi, A. D. Coral, J. C. R. F. Oliveira, and M.A. Romero, “All Silica S-Band Double-Pass Erbium-Doped Fiber Amplifier,” IEEE Photonics Technology Letters, Vol. 17, No. 7, pp. 1399-1401, Jul. 2005.
[6]J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 μm Er3+ doped silica fiber amplifier,” Electronics Letters 26, pp. 1645-1646, 1990.
[7]T. Sakamoto, S. Aozasa, M. Yamada and M. Shimizu, “High-gain hybrid amplifier consisting of cascaded fluoride-based TDFA and silica-based EDFA in 1458-1540 nm wavelength region,” Electronics Letters, Vol. 39, No. 7, pp. 597-599, Apr. 2003.
[8]T. Sakamoto, S.I. Aozasa, M. Yamada, and M. Shimizu, “Hybrid Fiber Amplifiers Consisting of Cascaded TDFA and EDFA for WDM Signals,” Journal of Lightwave Technology, Vol. 24, No. 6, Jun. 2006.
[9]T. Suzuki and Y. Ohishi, “Broadband 1400 nm emission from Ni2+ in zinc—alumino—silicate glass,” Appl. Phys. Lett., Vol. 84, pp. 3804-3806, 2004.
[10]S. Tanabe and X. Feng, “Temperature variation of near-infrared emission from Cr4+ in aluminate glass for broadband telecommunication,” Appl. Phys. Lett., Vol. 77, pp. 818-820, 2000.
[11]X. Feng and S. Tanabe, “Spectroscopy and crystal-field analysis for Cr(IV) in alumino-silicate glasses,” Optical Materials, Vol. 20, pp.63-72, 2002.
[12]Cz. Koepke, K. Wisniewski, and M. Grinberg, “Excited state spectroscopy of chromium ions in various valence states in glass,” J. of Alloys and compounds, Vol. 341, pp. 19-27, 2002.
[13]C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Appl. Phys. Lett., Vol. 82, pp. 4035-4037, 2003.
[14]V. Felice, B. Dussardier, J.K. Jones, G. Monnom, D.B. Ostrowsky, “Chromium-doped silica optical fibres: influence of the core composition on the Cr oxidation states and crystal field,” Optical Materials, Vol. 16, pp.269-277, 2003.
[15]V.V. Dvoyrin, V.M. Mashinsky, V.B. Neustruev, E.M. Dianov, A.N. Guryanov, and A.A. Umnikov, “Effective room-temperature luminescence in annealed chromium-doped silicate optical fibers,” J. of Optical Society of America B, Vol. 20, pp.280-283, 2003.
[16]S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” Journal of Crystal Growth, Vol. 183, pp. 614-621, 1998.
[17]C.Y. Lo, K.Y. Huang, J.C. Chen, C.Y. Chuang, C.C. Lai, S.L. Huang, Y.S. Lin, and P.S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics Letters, Vol. 30, pp. 129-131, 2005.
[18]C.Y. Lo, K.Y. Huang, J.C. Chen, S.Y. Tu, and S.L. Huang, “Glass-clad Cr4+ :YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Optics Letters, Vol. 29, pp. 439-441, 2004.
[19]Y. C. Huang, Y.K. Lu, J.C. Chen, Y.C. Hsu, Y.M. Huang, S.L. Huang, and W.H. Cheng, “Broadband emission from Cr-doped fibers fabricated by drawing tower,” Opt. Exp. 14, 8492-8497, 2006.
[20]Y. C. Huang, J.S. Wang, Y.K. Lu, W.K. Liu, K.Y Huang, S.L. Huang, and W.H. Cheng, “Preform fabrication and fiber drawing of 300 nm broadband Cr-doped fibers,” Opt. Exp. 15, 14382-14388, 2007.
[21]Y.C. Huang, J.S. Wang, Y.K. Lu, C.T. Wu, S.L. Huang, W.H. Cheng, “Fabrication of 300-nm Cr-Doped Fibers Using Fiber Drawing with PressureControl,” OFC, San Diego, CA, pp. JWA1, Feb., 2008.
[22]B. Henderson,Ralph H. Bartram, Crystal-Field Engineering of Solid-State Laser Materials, Cambridge University Press, 2000.
[23]J. H. Van Vleck, “Theory of the variations in paramagnetic anisotropy among different salts of the iron group,” Physical Review, Vol 41, pp. 208-215, 1932.
[24]http://www.rsc.org/chemsoc/visualelements/orbital/orbital_d.html
[25]Joseph C. Minutillo, “Copper-Containing Proteins,” from http://academics. adelphi.edu/artsci/bio/pdfs/copper_containing_protiens.pdf
[26]Y. Tanabe, S. Sugano, “On the absorption spectra of complex ions II,” Journal of the Physical Society of Japan, Vol 9, pp.79-92, 1954.
[27]Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q-switches,” Progress in Quantum Electronics, Vol 28, pp. 249-303, 2004.
[28]陳建誠, “雙纖衣摻鉻釔鋁石榴石晶體光纖之螢光光譜研究,” 博士畢業論文, 國立中山大學, 2006.
[29]W. A. Wall, J. T. Karpick, and B. D. Bartolo, “Temperature dependence of the vibronic spectrum and fluorescence lifetime of YAG:Cr3+,” Journal of Physics C: Solid State Physics 4, 1971.
[30]A. Kisilev, R. Reisfeld1 and E. Greenberg , A. Buch and M. Ish-Shalom, “Spectroscopy of chromium(III) in β-quartz and petalite-like transparent glass ceramics: Ligand field strengths of chromium(III),” Chemical Physics Letters, Vol. 105, pp. 405-408, 1984.
[31]Renata Reisfeld, “Potential uses of chromium(III)-doped transparent glass ceramics in tunable lasers and luminescent solar concentrators,” Materials Science and Engineering, Vol. 71, pp. 375-382, 1985.
[32]S. Kuck, K. Petermann, and G. Huber, “Spectroscopic investigation of the Cr4+-center in YAG,” OSA Proceedings on Advanced Solid-State Lasers, Vol. 10, pp. 92-94, 1991.
[33]A. A. Kaminskii, “Laser crystal,” 1st ed, Springer-Verlag Berlin Heidelberg New York, p. 241, 381, 382, 1981.
[34]S. Aoshima, H. Itoh, K. Kuroyanagi, Y. Takiguchi, Y. Ohbayashi, I. Hirano, and Y. Tsuchiya, “Tunable picosecond all solid-state Cr:LiSAF Laser,” IEEE, IMCT’94, pp. 937-940, 1994.
[35]塗時雨, “摻鉻釔鋁石榴石晶體光纖雷射之研製,” 碩士畢業論文, 國立中山大學, 2003.
[36]Y. K. Kuo, M. F. Huang, and M. Bimbaum, “Tunable Cr4+:YSO Q-switched Cr:LiCAF laser,” J. of Quantum Electron., Vol. 31, No. 4, pp. 657-663, 1995.
[37]T. Fujii, M. Nagano, and K. Nemoto, “Spectroscope and laser oscillation characteristics of high Cr4+-doped forsterite,” J. of Quantum Electron., Vol. 32, No. 8, pp. 1497-1503, 1996.
[38]S. Kuck, J. Koetke, K. Petermann, U. Pohlmann, and G. Huber, “Spectroscopic and laser studies of Cr4+:YAG and Cr4+:Y2SiO5,” SOA Proceedings on Advanced Solid-State Lasers, Vol. 15, pp. 334-338, 1993.
[39]U. Hommerich, X. Wu, and V. R. Davis, “Demonstration of room-temperature laser action at 2.5 m from Cr2+:Cd0.85Mn0.15Te,” Opt. Lett., Vol. 22, pp. 1180-1182, 1997.
[40]S. B. Mirov, V. V. Fedorov, K. Graham, and I. S. Moskalev, “CW and pulsed Cr2+:ZnS and ZnSe microchip laser,” Technical Digest, Lasers and Electro-Optics, pp. 120-121, 2002.
[41]J. McKay, K. L. Schepler and G. C. Catella, “Efficient grating-tuned mid-infrared Cr2+:CdSe laser,” Optics Letters, Vol. 24, No. 22 pp. 1575-1577, 1999.
[42]Yong-Nian Xu, W. Y. Ching, “Electronic structure of yttrium aluminum garnet (Y3Al5O12),” Physical Review B, Vol. 59, pp. 10530-10535, 1999.
[43]黃光瑤, “摻鉻釔鋁石榴石晶體光纖之超寬頻自發輻射放大光源之研製,” 碩士畢業論文, 國立中山大學, 2003.
[44]黃昱銘, “抽絲塔製程之摻鉻光纖,” 碩士畢業論文, 國立中山大學, 2006.
[45]劉文貴, “超寬頻摻鉻光纖製程與特性之研究,” 碩士畢業論文, 國立中山大學, 2007.
[46]黃翊中, “抽絲塔研製超寬頻摻鉻光纖之製程與特性,” 博士畢業論文, 國立中山大學, 2007.
[47]吳俊德, “抽絲塔製程摻鉻光纖螢光動態特性之研究,” 碩士畢業論文, 國立中山大學, 2008.
[48]Y. R. Shen, K. L. Bray, “Effect of pressure and temperature on the lifetime of Cr3+ in yttrium aluminum garnet,” Physical Review B, Vol 56, pp. 10882-10891, 1997.
[49]H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG laser,” IEEE Journal of Quantum Electronics Vol. 29, pp. 2508, 1993.
[50]Gerd Keiser, Optical Fiber Communication, McGraw-Hill College, 1999.
[51]http://www.ntmdt.com/data/media/files/products/ntegra/ntegra_spectra_datasheet.pdf
[52]http://micro.magnet.fsu.edu/primer/digitalimaging/concepts/photomultipliers.html
[53]http://elearning.stut.edu.tw/caster/3/no7/7-2.htm
[54]http://www.microscopy.ethz.ch/TEMED.htm
[55]Y.C. Huang, J.S. Wang, Y.S. Lin, T.C. Lin, W.L. Wang, Y.K. Lu, S.M. Yeh, H.H. Kuo, S.L. Huang, W.H. Cheng, “Development of Broadband Single-Mode Cr- Doped Silica Fibers,” IEEE PTL, VOL. 22, 2010.
[56]Aleksandr Aleksandrovich Kaminskii, Crystalline lasers: physical processes and operating schemes, CRC Press, 1996.
[57]C. Batchelor, W. J. Chung, S. Shen, A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Applied Physics Letters, Vol. 85, pp. 4035-4037, 2003.
[58]G. Boulon, “Luminescence in glassy and glass ceramic materials,” Materials Chemistry and Physics, Vol.16, pp. 301-347, 1987.
[59]John Ballato and Elias Snitzer, “Fabrication of fibers with high rare-earth concentrations for Faraday isolator applications,” Applied Optics, Vol 34, pp. 6848-6854, 1995.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔