跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/10/01 16:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張紹文
研究生(外文):Chang, Shao-Wen
論文名稱:應用人體動作分析於數位人動作之產生
論文名稱(外文):The Human Movement Analysis for Digital Human Motion Generation
指導教授:王茂駿王茂駿引用關係
指導教授(外文):Wang Mao-Jiun J.
學位類別:博士
校院名稱:國立清華大學
系所名稱:工業工程與工程管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:60
中文關鍵詞:工作姿勢人體動作組裝作業數位人體模型工作現場評估
外文關鍵詞:working postureassembly taskdigital human modelergonomic evaluation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:443
  • 評分評分:
  • 下載下載:119
  • 收藏至我的研究室書目清單書目收藏:2
工作現場的作業模擬已成為製造業在工作站設計階段所採用的主流技術。為了模擬生產現場中的人工作業,學界及產業界共同合作開發數位人體模型(Digital Human Model, DHM)技術,該技術也成為數位製造(Digital Manufacturing)領域中一個重要的模擬工具。而運用數位人技術時,由於人的動作機制相當複雜,要完整模擬作業時的各種動作遂十分困難。目前比較可行的方法是透過分析事前所收集的作業動作資訊,萃取出作業時的動作參數。將這些已儲存的參數匯入數位人動作產生軟體,可大幅提升動作模擬的真實性。
本研究中的動作分析實驗,其主要目的為透過實驗方法及動作捕捉(Motion Capture)技術收集組裝作業的關鍵動作資訊。本實驗包括八個受試者,自變項為出發位置(五水準) 、作業型態(三水準) 及作業高度(六水準),而量測變項為作業時的全身姿勢、骨盆的位置及方向。藉著本實驗可得到人員從不同出發位置行走至作業目標時的最終位置及方向,以及在面對不同高度執行不同型態作業時的工作姿勢。
本研究的成果可分為三部分說明。首先,受試者在接近目標物時會優先考量行進時的效率,在有效率的前提下以一種兼顧舒適性的方式來執行作業。此外,透過本研究可得到受試者在六種高度執行三種不同類型作業時的工作姿勢。進一步深入分析,受試者在眼高、肩高、肘高及臀高作業時,採取站姿,而在膝高及踝高等較低高度作業時,主要採蹲姿或彎腰姿勢。本研究成果除了可做為數位人動作產生時的參考,同時也可用作工作姿勢及工作現場事前評估的重要依據。
Task simulation and workplace evaluation under the digital environment have been widely adopted at early production planning stages by large-scale manufacturing companies. In order to successfully simulate the manual operation, digital human model (DHM) was created as a simulation tool to help managements making better decision. However, the unpredictability and complexity of human movements increase the difficulty of creating an accurate and efficient simulation model for human movements. Herein, a feasible approach was proposed to enhance the simulation reliability by retrieving the working posture parameters from collected human motion data and inputting to the digital human motion generation system.
The main purpose of this study was trying to gather critical information from workers in an assembly line by the means of the motion capture technology. An eight-subject experiment was designed to measure the pelvis orientation and position when approaching a working spot from five initial positions, and analyze the working posture while pointing a target, grasping a know, and pneumatic wrenching at six working heights.
The results indicated that the position and orientation of the subject’s whole body (while performing the operation) were significantly affected by his or her approach direction. Linear relationships between the approach direction and the final whole-body orientation were also obtained for each of the three tasks. Based on the result, we inferred that the subjects would prioritize their work efficiency and would try to find a comfortable way to perform their jobs. They deviated from the least-distance (straight line) walking path and reoriented their whole bodies for the operation when approaching the working spot. In addition, the working postures for the three tasks at six working heights were analyzed, too. The subjects tended to adopt standing postures when working at a height between eyes and hip, and stooping or squatting postures when operating at a height between knee and ankle. The findings of this research can be used to enhance the digital human modeling motion generated for human movement simulation.
Table of Content
中文摘要…………………………………………………………………I
ABSTRACT…………………………………………………………………II
Table of Content……………………………………………………III
Figure List ……………………………………………………V
Table……………………………………………………………………VII
Chapter 1 Introduction……………………………………………………………1
1.1 The Background of This Dissertation 1
1.2 The Purpose of This Dissertation 2
1.3 The Organization of This Dissertation 3
Chapter 2 Digital Human Model (DHM) Motion Generation………4
2.1 Forwards and Inverse Kinematics 4
2.2 Motion Capture 5
2.3 Motion Editing 5
2.4 Motion Prediction 5
2.5 Walking Path Planning 6
2.6 Motion Generation from Semantics 7
Chapter 3 Using DHM Simulation Method for Workplace Evaluation8
3.1 DHM Simulation Method 8
3.2 Collecting Workplace Information 9
3.3 Constructing a DHM and a Digital Work Environment 10
3.4 Task Simulation 11
3.5 Ergonomics Evaluations 11
3.6 Case Study: Automobile Assembly Task 14
3.6.1 Workplace Dimension and Motion Capture Data 14
3.6.2 Digital Workplace Construction …………………………15
3.6.3 Task Simulation ……………………………16
3.6.4 Ergonomics Evaluations …………………………17
3.6.5 Improvements and Reevaluation ………………………19
Chapter 4 Human Movement Analysis in Pointing, Grasping, and Wrenching Tasks…21
4.1 Introduction 21
4.2 Methods 24
4.2.1 Subjects …………………………………………………24
4.2.2 Experiment Design……………………………………………24
4.2.3 Apparatus……………………………………………………27
4.2.4 Experiment Procedure………………………………………30
4.2.5 Data Analysis…………………………………………………31
4.3 Results 31
4.3.1 Approach Strategy…………………………………………35
4.3.2 Working Posture……………………………………………38
Chapter 5 Discussions……………………………………………49
5.1 Approach Strategy 49
5.2 Working Posture 50
5.3 Movement Simulation 53
Chapter 6 Conclusions……………………………………………54
REFERENCES……………………………………………………………56
1. Abdel-Malek, K., Yang, J., Brand, R., and Tanbour, E., 2005, Towards understanding the workspace of human limbs, Ergonomics, 47, 1386−1405.

2. Arfken, G., 1985, Scalar or dot product. In Mathematical methods for physicists, Orlando: Academic Press.

3. Badler, N., Bindiganavale, R., Allbeck, J., Schuler, W., Zhao, L., and Palmer, M., 2001, Parameterized action representation for virtual human agents, Cambridge(MA): MIT Press.

4. Badler, N., Erignac, C., and Liu, Y., 2002, Virtual humans for validating maintenance procedures, Communication of the ACM, 45, 57-63.

5. Badler, N., 2000, Animation 2000++, IEEE Computer Graphics and Applications, 20, 28-29.

6. Bruderlin, A. and Calvert, T. W., 1989, Goal-directed animation of human walking, Computer Graphics, 23, 233–242.

7. Burgess-Limerick, R., 2003, Squat, stoop, or something in between, International Journal of Industrial Ergonomics, 31, 143-148.

8. Carrier, A., 1988, Simulation of Manufacturing Systems, Hoboken, NJ: John Wiley and Sons.

9. Chaffin, D. B., 2002, On simulating human reach motions for ergonomics analyses, Human Factors and Ergonomics in Manufacturing, 12, 235−247.
10. Chaffin, D. B., 2001, Digital human modeling for vehicle and workplace design, Warrendale, PA: Society of Automotive Engineers.

11. Chaffin, D. B., Faraway, J. J., Zhang, X., and Wooley, C., 2000, Stature, age and gender effects on reach motion postures, Human Factors, 42, 408– 420.

12. Chang, S. W., and Wang, M. J., 2007, Digital human modeling and workplace evaluation: using an automobile assembly task as an example, Human Factor and Ergonomics in Manufacturing, 17, 445-455.

13. Delleman, N. J., 1999, Working postures—prediction and evaluation, Soesterberg, The Netherlands: TNO Human Factors.

14. Delleman N. J., 2000, Maintenance operations: workstation adjustment, working posture, and workers' perceptions, International Journal of Occupational Safety and Ergonomics, 6, 3-46.

15. Dysart, M. J., and Woldstad, J. C, 1996, Posture prediction for static sagittal-plane lifting, Journal of Biomechanics, 29, 1393-1397.

16. Faraway, J. J., 2003, Data-based motion prediction, In Proceedings of SAE Digital Human Modeling for Design and Engineering Conference (SAE Tech. Paper 2003-01-2229), Montreal, CANADA: Society of Automotive Engineers.

17. Feyen, R., Liu, Y., Chaffin, D. B., Jimmerson, G., and Joseph, B., 2000, Computer-aided ergonomics: A case study of incorporating ergonomics analyses into workplace design, Applied Ergonomics, 31, 291–300.

18. Fischer, M. H., Rosenbaum, D. A., and Vaughan, J., 1997, Speed and sequential effects in reaching, Journal of Experiment Psychology: Human Perception and Performance, 23, 404-428.
19. Gleicher, M., 2001, Motion path editing, Proceedings of the 2001 ACM Symposium on Interactive 3D Graphics.

20. Hermite, C., 1864, Sur un nouveau développement en série de fonctions, Comptes Rendus de l’Academie des Sciences de Paris, 58, 93–100, 266–273.

21. ISO (International Organization for Standardization), 1996, ISO 7250: 1996(E), Geneva, Switzerland: ISO.

22. Jung, E. S., and Choe, J., 1996, Human reach posture prediction based on psychophysical discomfort, International Journal of Industrial Ergonomics 18, 173–179

23. Ko, H., and Badler, N., 1996, Animating human locomotion with inverse dynamics, IEEE Computer Graphic and Applications, 16, 50–59.

24. Kuo, C. F., and Wang, M. J., 2007, Interactive virtual evaluation for interface design, Human Factor and Ergonomics in Manufacturing, 17, 485-495.

25. Kuo, C. F., and Wang, M. J., 2009, Motion generation from MTM semantics, Computers in Industry, 60-339-348.

26. Lee, T. H., 2004, Lifting strengths decrease with the extent of squat postures, Journal of Back and Musculoskeletal Rehabilitation, 17, 105-109.

27. Liu, Y., Zhang, X., and Chaffin, D. B., 1997, Perception and visualization of human posture information for computer aided ergonomic analysis, Ergonomics, 40, 818-833.



28. Mattila, M., Karwowski, W., and Vilkki, M., 1993, Analysis of working postures in hammering tasks on building construction sites using the computerized OWAS method, Applied Ergonomics, 24, 405– 412.

29. Mayes, J., and James, C., 2000, Human modeling: Inverse kinematics with maximum joint availability, In Proceedings of the IEA 2000/HFE 2000 Congress, Santa Monica, CA: Human Factors and Ergonomics Society.

30. McAtamney, L., and Corlett, E. N., 1993, RULA: A survey method for the investigation of work related upper limb disorders, Applied Ergonomics, 24, 91–99.

31. Morasso, P., 1981, Spatial control of arm movements, Experimental Brain Research, 42, 223-227.

32. Nelson, W. L., 1983, Physical principles for economies of skill movements, Biological Cybernetics, 46, 135-147.

33. Noma, T., Zhao, L., and Badler, N., 2000, Design of a virtual human presenter, IEEE Computer Graphics and Applications, 20, 79-85.

34. Porter, M., and Gyi, D. E., 1998, Exploring the optimum posture for driver comfort, International Journal of Vehicle Design, 19, 255–266.

35. Rose, J., and Gamble, G. J., 2005, Human walking (third edition), Philadelphia, PA: Lippincott Williams and Wilkins.

36. Schultz, A. B., and Andersson, G. B. J., 1981, Analysis of loads on the lumbar spine, Spine, 6, 76–82.

37. Smeets, J. B. J., and Brenner, E., 1999, A new view on grasp. Motor control, 3, 237-271.
38. Thomas, J. S., and Gibson, G. E., 2007, Coordination and timing of spine and hip joints during full body reaching tasks, Human Movement Science, 26, 124-140.

39. Unuma, M., Anjyo, K., and Takeuchi, R., 1995, Fourier principles for emotion-based human figure animation, Proceedings of ACM SIGGRAPH.

40. Wagner, D. W., Reed, M. P., and Chaffin D. B., 2006, A task-based stepping behavior model for digital human models, In Proceedings of SAE Digital Human Modeling for Design and Engineering Conference (SAE Tech. Paper 2006-01-2364), Detroit, MI: Society of Automotive Engineers.

41. Witkin, A., and Popovic, Z., 1995, Motion warping, In C. Robert (Ed.), SIGGRAPH 95 Conference Proceedings, Annual Conference Series, 105–108.

42. Yang, J., Marler, T., Beck, S., Abdel-Malek, K., and Kim, J., 2006, Real-Time optimal reach posture prediction in a new interactive environment, Journal of Computer Science and Technology, 21, 189-198.

43. Zhang, X., and Chaffin, D. B., 1997, Task effects on three-dimensional dynamic postures during seated reaching movements: an investigative scheme and illustration, Human Factors, 39, 659-671.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top