(18.210.12.229) 您好!臺灣時間:2021/02/26 09:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖昱淳
研究生(外文):Liao, Yu-Chun
論文名稱:聯胺處理對單壁奈米碳管網絡薄膜物化特性影響之研究
論文名稱(外文):Effect of Hydrazine Treatment on Physicochemical Characteristics of Single-Walled Carbon Nanotube Networks
指導教授:王本誠許瑤真
指導教授(外文):Wang, Pen-ChengHsu, Yao-Jane
學位類別:碩士
校院名稱:國立清華大學
系所名稱:先進光源科技學位學程
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:99
中文關鍵詞:單壁奈米碳管聯胺拉曼光譜儀X光光電子能譜儀
外文關鍵詞:single-walled carbon nanotubehydrazineRaman SpectroscopyX-ray Photoemission Spectroscopy
相關次數:
  • 被引用被引用:1
  • 點閱點閱:211
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本研究中藉由熱裂解化學氣相沉積法的方式,以酒精蒸氣作為碳源,利用雙層觸媒系統以便成長出網絡狀單壁奈米碳管薄膜(SWCNT-networks),並利用濕式蝕刻的方式將高透明度及高導電度的單壁奈米碳管網絡狀薄膜移除下來,並轉移到其他基材上以便繼續對它做還原與氧化的化學修飾(chemical modification)處理。
化學修飾處理主要著重於單壁奈米碳管薄膜經還原劑(聯胺)處理後,實驗結果發現,聯胺處理後碳管表面鍵結了許多NH2,此舉會引起單壁奈米碳管薄膜自發性的摻雜(doping)效應,進而導致單壁奈米碳管薄膜導電特性之改變,其改變機制將利用四點探針(Four-point Probe)、場發射電子顯微鏡(Field Emission Scanning Electron Microscope, FESEM)、拉曼光譜儀(Raman Spectroscopy)、X光光電子能譜儀(X-ray Photoemission Spectroscopy, XPS)、及紫外光光電電子能譜(Ultra-violet Photoelectron Spectroscopy, UPS)的量測,研究當單壁奈米碳管網絡狀薄膜在經還原與氧化處理後,對於其導電特性、整體結構、碳管表面化學鍵結結構以及價帶電子結構的改變行為做一整合性之探討。
文中亦將還原劑處理與一般常見之氧化劑(硫酸)處理後之碳管表面特性做一詳細之比較,並探討已氧化之單壁奈米碳管薄膜經再次聯胺處理後所引起之還原效應。

In this study, a simple thermal pyrolysis chemical vapor deposition technique which was used alcohol vapor as the carbon source was synthesized high purity single-walled carbon nanotube on silicon substrate by double-layered catalytic system, and this sample was used a lift-off technique with BOE solution subsequently. After those processes, the SWCNT-networks successfully were separated from the silicon substrate. The lifted-off SWCNT-networks which has excellent optical and electrical properties was transferred the suspended SWCNT-networks to various substrates, and proceeded with chemical modification of reduction and oxidation treatment.
Chemical modification focused primarily on the reducing agent (hydrazine) treatment in SWCNT-networks. As the results of this experiment showed, the surface of SWCNT-networks which were treated by hydrazine has bonded to their sidewalls using amino groups. This situation was induced a spontaneous charge transfer that was led to the doping effect, and the change of SWCNT-networks’ conductivity. The phenomenon of charge transfer was analyzed by the four-point probe systems, field emission scanning electron microscope, Raman spectroscopy, X-ray Photoemission spectroscopy, and Ultra-violet Photoelectron spectroscopy. Though those analyses was investigated the pristine and reacted SWCNT-networks properties of conductive characteristics, the sidewall structure, chemical bonding species and valence bond electronic structure. Those overall results provide a comprehensive exploration.
This paper was also compared the characteristics of hydrazine treatment with acid treatment. We have proposed the reduction effect by hydrazine treated pre-oxidized SWCNT-networks.

摘要 i
英文摘要 ii
致謝 iii
第一章 緒論 1
1-1 前言 1
1-2 奈米碳管之簡介與應用 1
第二章 理論背景與文獻回顧 4
2-1 單壁奈米碳管的基本性質 4
2-1-1 單壁奈米碳管的幾何結構 4
2-1-2 單壁奈米碳管的能帶結構 7
2-2 單壁奈米碳管的合成 8
2-3 單壁奈米碳管的拉曼光譜分析 13
2-4 單壁奈米碳管的化學修飾 16
2-5 研究動機與目的 17
第三章 儀器設備與實驗原理 20
3-1 電子槍蒸鍍系統(E-gun evaporation system) 20
3-2 高溫熱裂解化學氣相沉積系統 21
3-3 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 21
3-4 微拉曼光譜儀 23
3-5 同步輻射光源(Synchrotron Radiation) 24
3-6 光電子發射能譜術(Photoemission Spectroscopy, PES) 25
3-6-1 超高真空系統(Ultra-high Vacuum System, UHV) 26
3-6-2 X光光電子發射能譜術(X-ray Photoelectron Spectroscopy, XPS) 27
3-6-3 紫外光光電電子能譜(Ultra-violet Photoelectron Spectroscopy, UPS) 29
3-7 四點探針量測儀 31
第四章 實驗方法與樣品量測 32
4-1實驗方法 32
4-2 單壁奈米碳管網絡薄膜的生長 33
4-2-1 基板的製備 33
4-2-2 以酒精催化式氣相沉積法合成單壁奈米碳管及薄膜 34
4-2-3 酒精催化式化學氣相沈積製程規劃及流程 35
4-2-4 酒精催化式化學氣相沈積之製程結果 36
4-2-5 半透明單壁奈米碳管網絡之導電薄膜 38
4-3 化學處理 40
4-4 XPS、UPS的量測 41
第五章 結果與討論 42
5-1 單壁奈米碳管網絡薄膜聯胺揮發蒸氣處理後之特性分析 42
5-1-1 導電性量測及其形貌變化 42
5-1-2 拉曼光譜表徵 47
5-1-3 奈米碳管薄膜表面之官能基鑑定 54
5-1-4 功函數變化 59
5-1-5 處理後穩定性觀察之結果 63
5-2 單壁奈米碳管網絡薄膜酸化處理後之特性分析 67
5-2-1 導電性量測及其形貌變化 67
5-2-2 拉曼光譜表徵 70
5-2-3 奈米碳管薄膜表面之官能基鑑定 72
5-2-4 功函數變化 76
5-3 單壁奈米碳管網絡薄膜聯胺處理與酸化處理之特性比較 80
5-4 單壁奈米碳管網絡薄膜聯胺處理後引起之還原效應 84
第六章 結論 89
參考文獻 90


1. Iijima, S., “HELICAL MICROTUBULES OF GRAPHITIC CARBON”, Nature, 354, 6348, 56-58, IIJIMA, S, NEC CORP LTD,FUNDAMENTAL RES LABS,34 MIYUKIGAOKA,TSUKUBA,IBARAKI 305,JAPAN., 1991.
2. Wang, X., et al., “Fabrication of Ultralong and Electrically Uniform Single-Walled Carbon Nanotubes on Clean Substrates”, Nano Letters, 9, 9, 3137-3141, 2009.
3. Klinke, C., et al., “Charge Transfer Induced Polarity Switching in Carbon Nanotube Transistors”, Nano Letters, 5, 3, 555-558, 2005.
4. Gojny, F.H., et al., “Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites”, Polymer, 47, 6, 2036-2045, 2006.
5. Han, L., et al., “A Direct Route toward Assembly of Nanoparticle−Carbon Nanotube Composite Materials”, Langmuir, 20, 14, 6019-6025, 2004.
6. MinFeng, Y. and et al., “Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope”, Nanotechnology, 10, 3, 244, 1999.
7. Gruner, G., “Carbon nanotube films for transparent and plastic electronics”, Journal of Materials Chemistry, 16, 35, 3533-3539, Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.Gruner, G, Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA.ggruner@ucla.edu, 2006.
8. Wu, Z., et al., “Transparent, Conductive Carbon Nanotube Films”, Science, 305, 5688, 1273-1276, 2004.
9. Hatton, R.A., A.J. Miller, and S.R.P. Silva, “Carbon nanotubes: a multi-functional material for organic optoelectronics”, Journal of Materials Chemistry, 18, 11, 1183-1192, 2008.
10. Landi, B.J., et al., “Single-wall carbon nanotube-polymer solar cells”, Progress in Photovoltaics: Research and Applications, 13, 2, 165-172, NanoPower Research Laboratories, Rochester Institute of Technology, Rochester, NY 14623, USA; Ohio Aerospace Institute, Brookpark, OH 44142, USA; NASA Glenn Research Center, Cleveland, OH 44135, USA, 2005.
11. Hirsch, A., “Functionalization of Single-Walled Carbon Nanotubes”, Angewandte Chemie International Edition, 41, 11, 1853-1859, Institut für Organische Chemie der Universität Erlangen-Nürnberg Henkestrasse 42, 91054 Erlangen (Germany) Fax: (+49) 9131-852-68-64, 2002.
12. Léonard, F. and J. Tersoff, “Novel Length Scales in Nanotube Devices”, Physical Review Letters, 83, 24, 5174, 1999.
13. Salvetat, J.P., et al., Physical properties of carbon nanotubes, in Electronic Properties of Novel Materials - Progress in Molecular Nanostructures - Xii International Winterschool, H. Kuzmany, et al., Editors. 1998, Amer Inst Physics: Melville. p. 467-480.
14. Rodriguez, N.M., “A REVIEW OF CATALYTICALLY GROWN CARBON NANOFIBERS”, Journal of Materials Research, 8, 12, 3233-3250, RODRIGUEZ, NM, PENN STATE UNIV,MAT RES LAB,UNIV PK,PA 16802., 1993.
15. RinakuMechatronicsCo., L.,
16. Guo, T., et al., “CATALYTIC GROWTH OF SINGLE-WALLED NANOTUBES BY LASER VAPORIZATION”, Chemical Physics Letters, 243, 1-2, 49-54, RICE UNIV,DEPT CHEM,HOUSTON,TX 77251. RICE UNIV,DEPT PHYS,HOUSTON,TX 77251.GUO, T, RICE UNIV,RICE QUANTUM INST,CTR NANOSCALE SCI & TECHNOL,MS 100,POB 1892,HOUSTON,TX 77251., 1995.
17. ChalmersUniversity, “ Dept. of Physics and Engineering Physics”, http://www.nephy.chalmers.se/,
18. Dresselhaus, M.S., et al., “Raman spectroscopy of carbon nanotubes”, Physics Reports-Review Section of Physics Letters, 409, 2, 47-99, MIT, Dept Phys, Cambridge, MA 02139 USA. MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA. Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan. JST, CREST, Sendai, Miyagi 9808578, Japan. Univ Fed Minas Gerais, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil.Dresselhaus, MS, MIT, Dept Phys, Room 13-3005, Cambridge, MA 02139 USA.millie@mgm.mit.edu, 2005.
19. Dresselhaus, M.S., G. Dresselhaus, and A. Jorio, “Raman Spectroscopy of Carbon Nanotubes in 1997 and 2007†”, The Journal of Physical Chemistry C, 111, 48, 17887-17893, 2007.
20. Ago, H., et al., “Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes”, The Journal of Physical Chemistry B, 103, 38, 8116-8121, 1999.
21. Graupner, R., et al., “Doping of single-walled carbon nanotube bundles by Bronsted acids”, Physical Chemistry Chemical Physics, 5, 24, 5472-5476, 2003.
22. Geng, H.-Z., et al., “Effect of Acid Treatment on Carbon Nanotube-Based Flexible Transparent Conducting Films”, Journal of the American Chemical Society, 129, 25, 7758-7759, 2007.
23. Tantang, H., et al., “Using oxidation to increase the electrical conductivity of carbon nanotube electrodes”, Carbon, 47, 7, 1867-1870, 2009.
24. Su, C.-Y., et al., “Chemically-treated single-walled carbon nanotubes as digitated penetrating electrodes in organic solar cells”, Journal of Materials Chemistry, 2010.
25. http://www.nsrrc.org.tw/,
26. 汪建民, “材料分析”, 中國材料科學學會, 325,370, 1998.
27. Vickerman, J.C., “Surface Analysis-The Principal Techniques”, John Wiley and Sons, New York, 1997.
28. G. Ertl, J.K., “Low Energy Electrons and Surface Chemistry”, Weinheim 1985.
29. Ishii, H., et al., “Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces”, Advanced Materials, 11, 605, 1999.
30. Ishii, H., et al., “Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces”, Advanced Materials, 11, 8, 605-625, Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602 (Japan); Venture Business Laboratory, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602 (Japan); Research Center for Materials Science and Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya 464-8602 (Japan); Tsukuba Research Center, Mitsubishi Chemical Corporation, Ami, Inashiki, Ibaraki 300-0332 (Japan), 1999.
31. 張俊彥、施敏, “半導體元件物理與製作技術”, 高立, 40, 1996.
32. Su, C.-Y., et al., “Scalable and Surfactant-Free Process for Single-Walled Carbon Nanotube Based Transparent Conductive Thin Films via Layer-by-Layer Assembly”, The Journal of Physical Chemistry C, 2010.
33. 成會明, “奈米碳管”, 五南, 197, 2004.
34. 韋進全、張先峰、王昆林, “奈米碳管巨觀體”, 五南, 158, 2009.
35. Saito, R., G. Dresselhaus, and M.S. Dresselhaus, “Trigonal warping effect of carbon nanotubes”, Physical Review B, 61, 4, 2981, 2000.
36. Jorio, A., et al., “Structural ( n, m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering”, Physical Review Letters, 86, 6, 1118, 2001.
37. McPhail, M.R., et al., “Charging Nanowalls: Adjusting the Carbon Nanotube Isoelectric Point via Surface Functionalization”, The Journal of Physical Chemistry C, 2009.
38. Kataura, H., et al., “Optical properties of single-wall carbon nanotubes”, Synthetic Metals, 103, 1-3, 2555-2558, 1999.
39. Pirlot, C., et al., “Preparation and Characterization of Carbon Nanotube/Polyacrylonitrile Composites”, Advanced Engineering Materials, 4, 3, 109-114, Laboratoire de Résonance Magnétique Nucléaire (RMN), Facultés Universitaires Notre Dame de la Paix, 61, Rue de Bruxelles, B-5000 Namur (Belgium); Laboratoire Interdisciplinaire de Spectroscopie Electronique (LISE), Facultés Universitaires Notre Dame de la Paix, 61, Rue de Bruxelles, B-5000 Namur (Belgium), 2002.
40. Yang, D.-Q. and E. Sacher, “Carbon 1s X-ray Photoemission Line Shape Analysis of Highly Oriented Pyrolytic Graphite:  The Influence of Structural Damage on Peak Asymmetry”, Langmuir, 22, 3, 860-862, 2005.
41. Cahill, P.A. and C.M. Rohlfing, “Theoretical studies of derivatized buckyballs and buckytubes”, Tetrahedron, 52, 14, 5247-5256, 1996.
42. 韋進全、張先峰、王昆林, “奈米碳管巨觀體”, 五南, 157, 2009.
43. Maldonado, S., S. Morin, and K.J. Stevenson, “Structure, composition, and chemical reactivity of carbon nanotubes by selective nitrogen doping”, Carbon, 44, 8, 1429-1437, 2006.
44. Vieira, R., et al., “New carbon nanofiber/graphite felt composite for use as a catalyst support for hydrazine catalytic decomposition”, Chemical Communications, 9, 954-955, 2002.
45. Yang, D., et al., “Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy”, Carbon, 47, 1, 145-152, 2009.
46. Oku, M., H. Matsuta, and K. Wagatsuma, “Chemical change of nitrosylpentacyanoferrate(II) during XPS measurements: Identification of the irradiated product by DV-X alpha molecular orbital calculations”, Journal of the Chemical Society-Faraday Transactions, 93, 6, 1061-1063, 1997.
47. Mukherjee, A., et al., “Attachment of Nitrogen and Oxygen Centered Radicals to Single-Walled Carbon Nanotube Salts”, Chemistry of Materials, 20, 23, 7339-7343, 2008.
48. Kusunoki, I., et al., “Nitridation of a diamond film using 300-700 eV N-2(+) ion beams”, Diamond and Related Materials, 9, 3-6, 698-702, 2000.
49. Simmons, J.M., et al., “Effect of Ozone Oxidation on Single-Walled Carbon Nanotubes”, The Journal of Physical Chemistry B, 110, 14, 7113-7118, 2006.
50. Zhou, W., et al., “Charge transfer and Fermi level shift in p-doped single-walled carbon nanotubes”, Physical Review B, 71, 20, 2005.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李三榮:〈庾信小園賦第一段的音韻技巧〉,國華民國聲韻學學會,輔仁大學國中文學系所主編:《聲韻論叢.第三輯》台北,臺灣學生,1991年。
2. 蕭蕭:〈瘂弦的情感世界〉,《中外文學目錄》8卷4期,1979年。
3. 姚一葦:〈論瘂弦的《坤伶》—兼及現代詩與傳統詩間的一個問題〉,《中外文學》3卷1期,1974年。
4. 周寧:〈試釋瘂弦《如歌的行板》〉,《幼獅月刊》第230號,1972年。
5. 莊雅州:〈聲韻學與散文鑒賞〉,國華民國聲韻學學會,輔仁大學國中文學系所主編:《聲韻論叢.第三輯》台北,臺灣學生,1991年。
6. 葛乃福:〈瘂弦印象〉,《文訊雜誌》第55期,1993年。
7. 李三榮:〈秋聲賦的音韻成就〉,國華民國聲韻學學會,臺灣師範大學國文系所主編:《聲韻論叢.第一輯》台北,臺灣學生,1994年。
8. 沈奇:〈對存在的開放和語言的再造—瘂弦詩歌藝術論(上) (中) (下)〉,《幼獅文藝》80卷第4、5、6期,1994年。
9. 葉維廉:〈在記憶離散的文化空間裡唱歌—論瘂弦記憶塑像的藝術〉,《中外文學》23卷3期,1994年。
10. 吳當:〈生命的寂寞與創意—試析瘂弦的《短歌集》〉,《中國語文》第459期,1995年。
11. 張默:〈夢從樺樹上跌下來—瘂弦的詩生活探微〉,《聯合文學》13卷4期,1997年。
12. 周世箴:〈聲韻與詩歌:聲韻類聚的聲情作用〉,國華民國聲韻學學會,彰化師範大學國文系主編:《聲韻論叢.第八輯》台北,臺灣學生,1999年。
13. 陳新雄:〈聲韻與文情之關係—以東坡詩為例〉,國華民國聲韻學學會,臺灣大學中文系主編:《聲韻論叢.第九輯》台北,臺灣學生,2000年。
14. 劉正忠:〈軍旅詩人的疏離心態:以五六十年代的洛夫、商禽、瘂弦為主〉,《臺灣文學學報》第2期,2001年。
 
系統版面圖檔 系統版面圖檔