|
1. Marshall, B.J. and J.R. Warren, Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1984. 1(8390): p. 1311-5. 2. Goodwin, C.S., et al., Cellular fatty acid composition of Campylobacter pylori from primates and ferrets compared with those of other campylobacters. J Clin Microbiol, 1989. 27(5): p. 938-43. 3. Hazell, S.L. and A. Lee, Campylobacter pyloridis, urease, hydrogen ion back diffusion, and gastric ulcers. Lancet, 1986. 2(8497): p. 15-7. 4. Banatvala, N., et al., The cohort effect and Helicobacter pylori. J Infect Dis, 1993. 168(1): p. 219-21. 5. Parsonnet, J., The incidence of Helicobacter pylori infection. Aliment Pharmacol Ther, 1995. 9 Suppl 2: p. 45-51. 6. Goodwin, C.S., M.M. Mendall, and T.C. Northfield, Helicobacter pylori infection. Lancet, 1997. 349(9047): p. 265-9. 7. Klein, P.D., et al., Water source as risk factor for Helicobacter pylori infection in Peruvian children. Gastrointestinal Physiology Working Group. Lancet, 1991. 337(8756): p. 1503-6. 8. Blaser, M.J., Helicobacter pylori: its role in disease. Clin Infect Dis, 1992. 15(3): p. 386-91. 9. Blaser, M.J., Helicobacter pylori and the pathogenesis of gastroduodenal inflammation. J Infect Dis, 1990. 161(4): p. 626-33. 10. Tatsuta, M., et al., Fundal atrophic gastritis as a risk factor for gastric cancer. Int J Cancer, 1993. 53(1): p. 70-4. 11. Viiala, C.H., H.M. Windsor, and B.J. Marshall, Cure rate of high dose omeprazole and amoxicillin therapy for treatment-resistant Helicobacter pylori infection. J Gastroenterol Hepatol, 2005. 20(4): p. 663-4. 12. Ota, H., et al., A dual staining method for identifying mucins of different gastric epithelial mucous cells. Histochem J, 1991. 23(1): p. 22-8. 13. Goso, Y., et al., Characterization of rat gastric mucins using a monoclonal antibody, RGM23, recognizing surface mucous cell-type mucins. J Biochem, 2003. 133(4): p. 453-60. 14. Hidaka, E., et al., Helicobacter pylori and two ultrastructurally distinct layers of gastric mucous cell mucins in the surface mucous gel layer. Gut, 2001. 49(4): p. 474-80. 15. Mahdavi, J., et al., Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science, 2002. 297(5581): p. 573-8. 16. Ilver, D., et al., Helicobacter pylori adhesin binding fucosylated histo-blood group antigens revealed by retagging. Science, 1998. 279(5349): p. 373-7. 17. Sipponen, P. and H. Hyvarinen, Role of Helicobacter pylori in the pathogenesis of gastritis, peptic ulcer and gastric cancer. Scand J Gastroenterol Suppl, 1993. 196: p. 3-6. 18. Nakayama, J., et al., Expression cloning of a human alpha1, 4-N-acetylglucosaminyltransferase that forms GlcNAcalpha1-->4Galbeta-->R, a glycan specifically expressed in the gastric gland mucous cell-type mucin. Proc Natl Acad Sci U S A, 1999. 96(16): p. 8991-6. 19. Kawakubo, M., et al., Natural antibiotic function of a human gastric mucin against Helicobacter pylori infection. Science, 2004. 305(5686): p. 1003-6. 20. Horii, T., et al., Antibacterial activities of beta-lactamase inhibitors associated with morphological changes of cell wall in Helicobacter pylori. Helicobacter, 2002. 7(1): p. 39-45. 21. Finlay, J., L. Miller, and J.A. Poupard, A review of the antimicrobial activity of clavulanate. J Antimicrob Chemother, 2003. 52(1): p. 18-23. 22. Lebrun, A.H., et al., Cloning of a cholesterol-alpha-glucosyltransferase from Helicobacter pylori. J Biol Chem, 2006. 281(38): p. 27765-72. 23. Wunder, C., et al., Cholesterol glucosylation promotes immune evasion by Helicobacter pylori. Nat Med, 2006. 12(9): p. 1030-8. 24. Hirai, Y., et al., Unique cholesteryl glucosides in Helicobacter pylori: composition and structural analysis. J Bacteriol, 1995. 177(18): p. 5327-33. 25. Inoue, Y., et al., Molecular cloning and characterization of chick SPACRCAN. J Biol Chem, 2006. 281(15): p. 10381-8. 26. Mathivet, L., S. Cribier, and P.F. Devaux, Shape change and physical properties of giant phospholipid vesicles prepared in the presence of an AC electric field. Biophys J, 1996. 70(3): p. 1112-21. 27. Simons, K. and E. Ikonen, Functional rafts in cell membranes. Nature, 1997. 387(6633): p. 569-72. 28. Sankaram, M.B. and T.E. Thompson, Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry, 1990. 29(47): p. 10670-5. 29. Brown, D.A. and E. London, Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol, 1998. 14: p. 111-36. 30. Kahya, N., et al., Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J Biol Chem, 2003. 278(30): p. 28109-15. 31. Bacia, K., P. Schwille, and T. Kurzchalia, Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc Natl Acad Sci U S A, 2005. 102(9): p. 3272-7. 32. Simons, K. and D. Toomre, Lipid rafts and signal transduction. Nat Rev Mol Cell Biol, 2000. 1(1): p. 31-9. 33. McMullen, T.P., et al., Differential scanning calorimetric study of the effect of sterol side chain length and structure on dipalmitoylphosphatidylcholine thermotropic phase behavior. Biophys J, 1995. 69(1): p. 169-76. 34. Hagen, J.P. and H.M. McConnell, Liquid-liquid immiscibility in lipid monolayers. Biochim Biophys Acta, 1997. 1329(1): p. 7-11. 35. Silvius, J.R., D. del Giudice, and M. Lafleur, Cholesterol at different bilayer concentrations can promote or antagonize lateral segregation of phospholipids of differing acyl chain length. Biochemistry, 1996. 35(48): p. 15198-208. 36. Brzustowicz, M.R., et al., Controlling membrane cholesterol content. A role for polyunsaturated (docosahexaenoate) phospholipids. Biochemistry, 2002. 41(41): p. 12509-19. 37. Korlach, J., et al., Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A, 1999. 96(15): p. 8461-6. 1. Foster, C., Stress testing. Directions for the future. Sports Med, 1988. 6(1): p. 11-22. 2. Rossello-Mora, R. and R. Amann, The species concept for prokaryotes. FEMS Microbiol Rev, 2001. 25(1): p. 39-67. 3. Doolittle, W.F., Phylogenetic classification and the universal tree. Science, 1999. 284(5423): p. 2124-9. 4. Liesack, W. and E. Stackebrandt, Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol, 1992. 174(15): p. 5072-8. 5. Cottrell, M.T., et al., Selected chitinase genes in cultured and uncultured marine bacteria in the alpha- and gamma-subclasses of the proteobacteria. Appl Environ Microbiol, 2000. 66(3): p. 1195-201. 6. Giovannoni, S.J., et al., Genetic diversity in Sargasso Sea bacterioplankton. Nature, 1990. 345(6270): p. 60-3. 7. Hugenholtz, P., et al., Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol, 1998. 180(2): p. 366-76. 8. Wasserman, S.A., C.T. Walsh, and D. Botstein, Two alanine racemase genes in Salmonella typhimurium that differ in structure and function. J Bacteriol, 1983. 153(3): p. 1439-50. 9. Wood, W.A. and I.C. Gunsalus, D-Alanine formation; a racemase in Streptococcus faecalis. J Biol Chem, 1951. 190(1): p. 403-16. 10. Walsh, C.T., Enzymes in the D-alanine branch of bacterial cell wall peptidoglycan assembly. J Biol Chem, 1989. 264(5): p. 2393-6. 11. Choi, S.Y., et al., Bacterial glutamate racemase has high sequence similarity with myoglobins and forms an equimolar inactive complex with hemin. Proc Natl Acad Sci U S A, 1994. 91(21): p. 10144-7. 12. Huang, H.T. and J.W. Davisson, Distribution of lysine racemase in bacteria. J Bacteriol, 1958. 76(5): p. 495-8. 13. Chang, Y.F. and E. Adams, D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism. J Bacteriol, 1974. 117(2): p. 753-64. 14. Chen, I.C., et al., Lysine racemase: a novel non-antibiotic selectable marker for plant transformation. Plant Mol Biol, 2010. 72(1-2): p. 153-69. 15. Chen, I.C., et al., Isolation and characterization of a novel lysine racemase from a soil metagenomic library. Appl Environ Microbiol, 2009. 75(15): p. 5161-6. 16. Nonaka, T., et al., Crystal structure of putative N-acetyl-gamma-glutamyl-phosphate reductase (AK071544) from rice (Oryza sativa). Proteins, 2005. 61(4): p. 1137-40.
|