(3.238.7.202) 您好!臺灣時間:2021/03/04 02:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:阿依肯
研究生(外文):Kali Aikyn
論文名稱:脯氨酸導引蛋白質激酶FA在乳癌與肺癌上皮-間質轉化調節的腫瘤-間質協調進化中扮演的角色
論文名稱(外文):Role of PDPK FA in EMT-mediated tumor-stroma co-evolution of breast and lung cancers
指導教授:楊孝德
指導教授(外文):Yang, Shiaw-Der
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:51
中文關鍵詞:脯氨酸導引蛋白質激&脯氨酸導引蛋白質激&脯氨酸導引蛋白質激&
外文關鍵詞:PDPK FAtumor microenvironmentEMT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:360
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
腫瘤和基質間的協調串擾與病理相關的上皮-間質轉化對于腫瘤細胞侵襲和轉移是至關重要的。這兩種機制是在腫瘤進展中共存且不可分割的機制。脯氨酸導引蛋白質激酶FA已被闡明爲多底物-多功能的與人類癌症相關的脯氨酸導引蛋白質激酶。在此研究中我們以免疫組織化學爲研究方法觀察了乳癌和肺癌的樣本,並且發現了脯氨酸導引蛋白質激酶 FA 相關的重要細胞族群和它們的腫瘤發展中的上皮-間質轉化-協調的動態。我們又找到了和脯氨酸導引蛋白質激酶 FA密切相關的促使腫瘤的因子,譬如骨橋蛋白和白細胞介素-6。我們的實驗結果表明脯氨酸導引蛋白質激酶 FA是牽涉到乳癌和肺癌的上皮-間質轉化-協調的間質轉化調節進化中的重要信號分子。
Coordinated crosstalk between tumor and stroma and pathologically relevant epithelial-mesenchymal transition are vital for tumor cell invasion and metastasis. These two mechanisms are unlikely individual events of tumor progression, instead they are ‘inseparable body’ of tumor progression. Proline-directed protein kinase FA (PDPK FA), which has been characterized as a multisubstrate-multifunctional PDPK possibly associated with human cancers. In this study we investigated human breast and lung clinical tumor samples by means of immunohistochemistry method, and identified crucial nPDPK FA associated cell populations and their EMT-mediated dynamics during tumor progression. We also identified most frequently PDPK FA associated tumor-promoting factors such as osteopontin and interleukin-6. Our data indicates that PDPK FA is a key signaling molecule involved in EMT-mediated tumor-stroma co-evolution of breast and lung cancers.
ABBREVIATIONS.………………………………………………………2
ABSTRACT……...……………………………………………………..4
CHAPTER 1: TRODUCTION………………………………………….5
CHAPTER 2: EXPERIMENTAL PROCEDURES…………………….11
2.1. Materials and methods……………………………………..11
2.2. Immunohistochemistry…………………………………….12
CHAPTER 3: RESULTS AND DISCUSSION…………………...…..13
3.1. nPDPK FA overexpressed cell populations in
tumor microenvironment………..………………………….13
3.2. PDPK FA is a prerequisite for EMT...………………………17
3.3. PDPK FA mediated coevolution of
breast and lung tumor-stroma…..…………………………..23
3.4. PDPK FA associated
tumor-promoting factors…..………………………………..28
CHAPTER4: CONCLUSION………………………………………….41
REFERENCES………………………………………………………....42
Albini, A., and Sporn, M.B. (2007). The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7, 139-147.
Ara, T., and Declerck, Y.A. (2010). Interleukin-6 in bone metastasis and cancer progression. Eur J Cancer 46, 1223-1231.
Balkwill, F. (2009). Tumour necrosis factor and cancer. Nat Rev Cancer 9, 361-371.
Barre, B., Vigneron, A., Perkins, N., Roninson, I.B., Gamelin, E., and Coqueret, O. (2007). The STAT3 oncogene as a predictive marker of drug resistance. Trends Mol Med 13, 4-11.
Bhowmick, N.A., Neilson, E.G., and Moses, H.L. (2004). Stromal fibroblasts in cancer initiation and progression. Nature 432, 332-337.
Bissell, M.J., and Radisky, D. (2001). Putting tumours in context. Nat Rev Cancer 1, 46-54.
Blasberg, J.D., Pass, H.I., Goparaju, C.M., Flores, R.M., Lee, S., and Donington, J.S. (2010). Reduction of elevated plasma osteopontin levels with resection of non-small-cell lung cancer. J Clin Oncol 28, 936-941.
Blick, T., Widodo, E., Hugo, H., Waltham, M., Lenburg, M.E., Neve, R.M., and Thompson, E.W. (2008). Epithelial mesenchymal
43
transition traits in human breast cancer cell lines. Clin Exp Metastasis 25, 629-642.
Bonnomet, A., Brysse, A., Tachsidis, A., Waltham, M., Thompson, E.W., Polette, M., and Gilles, C. (2010). Epithelial-to-mesenchymal transitions and circulating tumor cells. J Mammary Gland Biol Neoplasia 15, 261-273.
Boye, K., and Maelandsmo, G.M. (2010). S100A4 and metastasis: a small actor playing many roles. Am J Pathol 176, 528-535.
Bremnes, R.M., Veve, R., Hirsch, F.R., and Franklin, W.A. (2002). The E-cadherin cell-cell adhesion complex and lung cancer invasion, metastasis, and prognosis. Lung Cancer 36, 115-124.
Chamberlain, G., Fox, J., Ashton, B., and Middleton, J. (2007). Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing. Stem Cells 25, 2739-2749.
Chang, H.Y., Chi, J.T., Dudoit, S., Bondre, C., van de Rijn, M., Botstein, D., and Brown, P.O. (2002). Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci U S A 99, 12877-12882.
Cook, A.C., Tuck, A.B., McCarthy, S., Turner, J.G., Irby, R.B., Bloom, G.C., Yeatman, T.J., and Chambers, A.F. (2005). Osteopontin induces multiple changes in gene expression that reflect the six
44
"hallmarks of cancer" in a model of breast cancer progression. Mol Carcinog 43, 225-236.
De Wever, O., Pauwels, P., De Craene, B., Sabbah, M., Emami, S., Redeuilh, G., Gespach, C., Bracke, M., and Berx, G. (2008). Molecular and pathological signatures of epithelial-mesenchymal transitions at the cancer invasion front. Histochem Cell Biol 130, 481-494.
Fedarko, N.S., Jain, A., Karadag, A., Van Eman, M.R., and Fisher, L.W. (2001). Elevated serum bone sialoprotein and osteopontin in colon, breast, prostate, and lung cancer. Clin Cancer Res 7, 4060-4066.
Grigorian, M., Ambartsumian, N., Lykkesfeldt, A.E., Bastholm, L., Elling, F., Georgiev, G., and Lukanidin, E. (1996). Effect of mts1 (S100A4) expression on the progression of human breast cancer cells. Int J Cancer 67, 831-841.
Gritsko, T., Williams, A., Turkson, J., Kaneko, S., Bowman, T., Huang, M., Nam, S., Eweis, I., Diaz, N., Sullivan, D., et al. (2006). Persistent activation of stat3 signaling induces survivin gene expression and confers resistance to apoptosis in human breast cancer cells. Clin Cancer Res 12, 11-19.
Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70.
45
Hsu, Y.C., Fu, H.H., Jeng, Y.M., Lee, P.H., and Yang, S.D. (2006). Proline-directed protein kinase FA is a powerful and independent prognostic predictor for progression and patient survival of hepatocellular carcinoma. J Clin Oncol 24, 3780-3788.
Hu, Z., Lin, D., Yuan, J., Xiao, T., Zhang, H., Sun, W., Han, N., Ma, Y., Di, X., Gao, M., et al. (2005). Overexpression of osteopontin is associated with more aggressive phenotypes in human non-small cell lung cancer. Clin Cancer Res 11, 4646-4652.
Iwatsuki, M., Mimori, K., Yokobori, T., Ishi, H., Beppu, T., Nakamori, S., Baba, H., and Mori, M. (2010). Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 101, 293-299.
Joyce, J.A. (2005). Therapeutic targeting of the tumor microenvironment. Cancer Cell 7, 513-520.
Joyce, J.A., and Pollard, J.W. (2009). Microenvironmental regulation of metastasis. Nat Rev Cancer 9, 239-252.
Karnoub, A.E., Dash, A.B., Vo, A.P., Sullivan, A., Brooks, M.W., Bell, G.W., Richardson, A.L., Polyak, K., Tubo, R., and Weinberg, R.A. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557-563.
46
Kim, Y.C., Wu, Q., Chen, J., Xuan, Z., Jung, Y.C., Zhang, M.Q., Rowley, J.D., and Wang, S.M. (2009). The transcriptome of human CD34+ hematopoietic stem-progenitor cells. Proc Natl Acad Sci U S A 106, 8278-8283.
Knutson, K.L., Lu, H., Stone, B., Reiman, J.M., Behrens, M.D., Prosperi, C.M., Gad, E.A., Smorlesi, A., and Disis, M.L. (2006). Immunoediting of cancers may lead to epithelial to mesenchymal transition. J Immunol 177, 1526-1533.
Kokkinos, M.I., Wafai, R., Wong, M.K., Newgreen, D.F., Thompson, E.W., and Waltham, M. (2007). Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivo. Cells Tissues Organs 185, 191-203.
Le, Q.T., Chen, E., Salim, A., Cao, H., Kong, C.S., Whyte, R., Donington, J., Cannon, W., Wakelee, H., Tibshirani, R., et al. (2006). An evaluation of tumor oxygenation and gene expression in patients with early stage non-small cell lung cancers. Clin Cancer Res 12, 1507-1514.
Lewis, C.E., and Pollard, J.W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Res 66, 605-612.
Liotta, L.A., and Kohn, E.C. (2001). The microenvironment of the tumour-host interface. Nature 411, 375-379.
47
Lopez-Novoa, J.M., and Nieto, M.A. (2009). Inflammation and EMT: an alliance towards organ fibrosis and cancer progression. EMBO Mol Med 1, 303-314.
Lorusso, G., and Ruegg, C. (2008). The tumor microenvironment and its contribution to tumor evolution toward metastasis. Histochem Cell Biol 130, 1091-1103.
Mack, P.C., Redman, M.W., Chansky, K., Williamson, S.K., Farneth, N.C., Lara, P.N., Jr., Franklin, W.A., Le, Q.T., Crowley, J.J., and Gandara, D.R. (2008). Lower osteopontin plasma levels are associated with superior outcomes in advanced non-small-cell lung cancer patients receiving platinum-based chemotherapy: SWOG Study S0003. J Clin Oncol 26, 4771-4776.
Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancer-related inflammation. Nature 454, 436-444.
Martin, F.T., Dwyer, R.M., Kelly, J., Khan, S., Murphy, J.M., Curran, C., Miller, N., Hennessy, E., Dockery, P., Barry, F.P., et al. (2010). Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT). Breast Cancer Res Treat.
Massberg, S., Schaerli, P., Knezevic-Maramica, I., Kollnberger, M., Tubo, N., Moseman, E.A., Huff, I.V., Junt, T., Wagers, A.J., Mazo, I.B., et al. (2007). Immunosurveillance by hematopoietic progenitor
48
cells trafficking through blood, lymph, and peripheral tissues. Cell 131, 994-1008.
Nguyen, D.X., Bos, P.D., and Massague, J. (2009). Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9, 274-284.
Onder, T.T., Gupta, P.B., Mani, S.A., Yang, J., Lander, E.S., and Weinberg, R.A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 68, 3645-3654.
Polyak, K., Haviv, I., and Campbell, I.G. (2009). Co-evolution of tumor cells and their microenvironment. Trends Genet 25, 30-38.
Qian, B.Z., and Pollard, J.W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39-51.
Rangaswami, H., Bulbule, A., and Kundu, G.C. (2006). Osteopontin: role in cell signaling and cancer progression. Trends Cell Biol 16, 79-87.
Rudland, P.S., Platt-Higgins, A., Renshaw, C., West, C.R., Winstanley, J.H., Robertson, L., and Barraclough, R. (2000). Prognostic significance of the metastasis-inducing protein S100A4 (p9Ka) in human breast cancer. Cancer Res 60, 1595-1603.
Sheehan, K.M., Gulmann, C., Eichler, G.S., Weinstein, J.N., Barrett, H.L., Kay, E.W., Conroy, R.M., Liotta, L.A., and Petricoin, E.F., 3rd (2008). Signal pathway profiling of epithelial and stromal
49
compartments of colonic carcinoma reveals epithelial-mesenchymal transition. Oncogene 27, 323-331.
Spaeth, E.L., Dembinski, J.L., Sasser, A.K., Watson, K., Klopp, A., Hall, B., Andreeff, M., and Marini, F. (2009). Mesenchymal stem cell transition to tumor-associated fibroblasts contributes to fibrovascular network expansion and tumor progression. PLoS One 4, e4992.
Sullivan, N.J., Sasser, A.K., Axel, A.E., Vesuna, F., Raman, V., Ramirez, N., Oberyszyn, T.M., and Hall, B.M. (2009). Interleukin-6 induces an epithelial-mesenchymal transition phenotype in human breast cancer cells. Oncogene 28, 2940-2947.
Suzuki, M. (1989). SPXX, a frequent sequence motif in gene regulatory proteins. J Mol Biol 207, 61-84.
Thiery, J.P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2, 442-454.
Thiery, J.P., Acloque, H., Huang, R.Y., and Nieto, M.A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890.
Thiery, J.P., and Sleeman, J.P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7, 131-142.
50
Thomas, P.A., Kirschmann, D.A., Cerhan, J.R., Folberg, R., Seftor, E.A., Sellers, T.A., and Hendrix, M.J. (1999). Association between keratin and vimentin expression, malignant phenotype, and survival in postmenopausal breast cancer patients. Clin Cancer Res 5, 2698-2703.
Tse, J.C., and Kalluri, R. (2007). Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem 101, 816-829.
Vandenheede, J.R., Yang, S.D., Goris, J., and Merlevede, W. (1980). ATP x Mg-dependent protein phosphatase from rabbit skeletal muscle. II. Purification of the activating factor and its characterization as a bifunctional protein also displaying synthase kinase activity. J Biol Chem 255, 11768-11774.
Wai, P.Y., and Kuo, P.C. (2004). The role of Osteopontin in tumor metastasis. J Surg Res 121, 228-241.
Wai, P.Y., and Kuo, P.C. (2008). Osteopontin: regulation in tumor metastasis. Cancer Metastasis Rev 27, 103-118.
Witz, I.P. (2008). Yin-yang activities and vicious cycles in the tumor microenvironment. Cancer Res 68, 9-13.
Woodgett, J.R. (1990). Molecular cloning and expression of glycogen synthase kinase-3/factor A. EMBO J 9, 2431-2438.
51
Wu, Y., and Zhou, B.P. (2010). TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer 102, 639-644.
Xue, C., Plieth, D., Venkov, C., Xu, C., and Neilson, E.G. (2003). The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res 63, 3386-3394.
Yang, J., and Weinberg, R.A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14, 818-829.
Yang, S.D. (1986). Identification of the ATP.Mg-dependent protein phosphatase activator (FA) as a myelin basic protein kinase in the brain. J Biol Chem 261, 11786-11791.
Yang, S.D. (2004). Proline-directed protein kinase FA as a potential target for diagnosis and therapy of human cancers. Curr Cancer Drug Targets 4, 591-596.
Yang, S.D., Vandenheede, J.R., Goris, J., and Merlevede, W. (1980). ATP x Mg-dependent protein phosphatase from rabbit skeletal muscle. I. Purification of the enzyme and its regulation by the interaction with an activating protein factor. J Biol Chem 255, 11759-11767.
Yu, H., Kortylewski, M., and Pardoll, D. (2007). Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7, 41-51.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. [8] 林宏年, 呂嘉裕, 林鴻志, 黃調元, “局部與全面形變矽通道(strained Si channel)互補式金氧半(CMOS) 之材料、製程與元件特性分析(II),國家奈米實驗室_奈米通訊期刊, 第十二卷, 第二期, pp.18-22.
2. 12. 姚白芳,〈截斷的病肢,截不斷的愛:烏腳病與曾文賓醫師〉,《經典雜誌》,第96期,2006年7月1日,頁99-100。
3. 11. 林秀英,〈烏腳病流行地區的新問題〉,《綜合月刊》,第139期,1980年6月,頁57-61。
4. 4. 蘇益仁,〈台灣西南沿海烏腳病地區的癌症流行〉,《科學月刊》,第147期,第13卷第3期,1982年3月。
5. 2. 呂鋒洲、郭浩然,〈烏腳病的研究與發展〉,《健康世界》,第133期,1987年1月,頁36-37。
6. 3. 陳建仁,〈烏腳病的奧秘—多階段、多因子致病機轉的探討〉,《科學月刊》,第20卷第10期,1989年。
7. 24. 李貞德,〈從師母當女宣—孫理蓮在戰後台灣的醫療傳道經驗〉,《新史學》,第16卷第2期,2005年6月。
8. 池田鳳姿著‧陳艷紅譯,〈關於《民俗台灣》〉,《臺灣文學評論》,第5卷第2期,2005.04。
9. 15. 曾文賓,〈烏腳病(一)〉,《當代醫學》,第1卷12期,1974年,頁51-56。
10. 14. 梁靜祝、高紀惠、廖小瑞、余淑美,〈烏腳病的慢性疼痛及其影響之研究〉,《護理雜誌季刊》,第34卷第1期,1987年1月,頁105。
11. 林莊生,〈《民俗臺灣》與金關丈夫─五十年後的讀感〉,《臺灣風物》,45卷1期。
12. 三尾裕子,《以殖民統治下的灰色地帶做為異質化之談論的可能性─以《民俗臺灣》為例》臺灣文獻第53卷第3期。
13. 廖瑾瑗,〈臺灣近代藝術的表徴ー《民俗臺灣》的光與影〉,《區域與時代風格的激盪─臺灣美術主體性學術研討會論文集》,2007。
14. 林柏亭,〈臺灣東洋畫的興起與臺、府展〉,《藝術學》第三期,藝術家出版社,1989.03
15. 李進發,〈日據時代官辦台灣美術展覽會實施背景的探究〉《現代美術》45期,藝術家,1992 。
 
系統版面圖檔 系統版面圖檔