(3.238.130.97) 您好!臺灣時間:2021/05/18 18:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:王梓仲
研究生(外文):Wang, Tzu-Chung
論文名稱:FacileMethodsforNanoscalePANCarbonization
論文名稱(外文):奈米尺度下聚丙烯腈碳化之研究
指導教授:何榮銘
指導教授(外文):Ho, Rong-Ming
學位類別:博士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:98
語文別:英文
論文頁數:125
中文關鍵詞:聚丙烯腈碳化奈米碳材高分子鏈排整高分子團聯共聚物溶劑退火法
外文關鍵詞:polyacrylonitrilecarbonizationnanocarbon materialspolymer chain orientationblock copolymerssolvent annealing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
A series of degradable block copolymers, poly(acrylonitrile)-b-poly(ε-caprolactone) (PAN-PCL), have been synthesized by sequential living polymerization in this study. Well-defined, microphase-separated PAN-PCL microdomains were efficiently achieved in bulk by using appropriate solvents for casting. The microphase-separated lamellar samples were then used as templates to produce mesoporous carbon at which large amounts of porous texture in carbonized PAN matrix were formed after the degradation of PCL due to randomly oriented lamellar texture (namely, interconnection of PCL microdomains). Mesoporous carbon materials might be prepared as demonstrated by transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) and small-angle X-ray scattering. In contrast to the thermal stability of the carbonization of PAN homopolymers, notably, the carbonization procedure can be achieved in PAN-PCL BCPs system regardless of the stretching process (i.e., an essential process to improve the thermal stability of PAN during carbonization). We speculate that this unique feature for the carbonization of PAN-based copolymers might be attributed to the stretching chain conformations of PAN molecules under microphase-separated structures.
To further examine the methods for induction of chain stretching under nanoscale dimension, carbonization approach without chemical linkage (namely PAN homopolymers under confinement) were studied. PAN homopolymers were filled into inorganic hundred-nanometer-sized templates, anodized alumina oxides (AAOs), via direct capillary force. With a specific pore-filling process, a solvent-annealing process, graphite-like nanotubes can be fabricated from PAN pore-filling AAO templates. Thus, AAO templates acted as scaffolds supporting the formation of carbon nanotubes through carbonization, and were subsequently etched away, leaving behind the carbon nanotubes. To achieve appropriate molecular packing for carbonization, the anisotropic molecular orientation of PAN chains was induced by solvent annealing due to the capillary-filling process. Consequently, hundred-nanometer-sized carbon nanotubes formed after carbonation, as demonstrated by TEM and FESEM observations. Importantly, the carbon nanotubes with a graphite-like structure and high crystallinity can be fabricated, as demonstrated by selected area electron diffraction results. Notably, these carbon nanotubes cannot be fabricated using the conventional solution-wetting process. The formation of a core-shell cylinder texture was also demonstrated via multiple filling processes. Herein, facile methods for nanoscale PAN carbonization were demonstrated. In a microphase-separed system, the stretching chain conformation for carbonization could be achieved by the immiscibility of each block. For homopolymers, the stretching chain conformation could be formed by capillary force and preserved by controlling the evaporation dynamically. These approaches for nanoscale PAN carbonization can provide a convenient and promising way to fabricate carbon materials with various nanostructures, well-controlled sizes and high crystallinity.
Abstract I
Acknowledgement III
Contents V
List of Tables VIII
Scheme Caption VIII
Figures Captions IX
Chapter 1 Introduction 1
1.1 Carbon Materials with Nanostructures 1
1.1-1 The Carbon Element 2
1.1-2 Synthesis of Carbon Nanotubes 5
1.1-3 Properties and Applications of Carbon Nanotubes 8
1.1-4 Carbon Fiber 10
1.1-5 Mesoporous Carbon Materials 11
1.2 Carbonization of PAN 13
1.2-1 Stabilization Process 14
1.2-2 The Importance of Fiber Stretching 16
1.2-3 Carbonization Process 17
1.3 PAN-based Block Copolymers …………………...19
1.3-1 Self-assembly of Block Copolymers 19
1.3-2 Poly(acrylonitrile)-b-poly(n-butyl acrylate) (PAN-PBA) 23
1.3-3 Poly(acrylonitrile)-b-poly(styrene) (PAN-PS) 25
1.3-4 Poly(acrylonitrile)-b-poly(acrylic acid) (PAN-PAA) 27
1.3-5 Poly(acrylonitrile)-b-poly(ethylene oxide) (PAN-PEO) 29
1.4 Nanotubes from Template Wetting 31
1.4-1 Template-based Synthesis 32
1.4-2 Polymer Melt Wetting 34
1.4-3 Solution Wetting 40
1.4-4 Specific Behaviors under Confined Nanostructures 44
Chapter 2 Objectives 50
Chapter 3 Experimental 53
3.1 Materials 53
3.1-1 Synthesis of PAN-PCL block copolymers 53
3.1-2 PAN homopolymer 55
3.1-3 AAO templates 55
3.2 Sample Preparation 56
3.2-1 PAN-PCL bulk samples 56
3.2-2 Carbon Nanotube Preparation from Pore-filling Template 56
3.2-3 SiO2/Carbon Composites 57
3.2-4 Ag/Carbon Composites 57
3.3 Instruments 58
3.3-1 Thermogravimetric Analysis (TGA) 58
3.3-2 Small-angle X-ray Scattering (SAXS) 58
3.3-3 Transmission Electron Microscopy (TEM) 59
3.3-4 Field-Emission Scanning Electron Microscopy (FESEM) 60
Chapter 4 Results and Discussion 61
4.1 Carbonization of PAN in Self-assembled PAN-PCL Block Copolymers 61
4.1-1 Microphase-separated Morphology of PAN-PCL 61
4.1-2 Stabilization of PAN in PAN-PCL 65
4.1-3 Degradation of PCL in PAN-PCL 69
4.1-4 Carbonization of Mesoporous PAN 72
4.1-5 Confinement effect on Carbonization 75
4.2 Carbonization of PAN in Solvent-annealed Nanotubes .79
4.2-1 Morphologies of AAO 79
4.2-2 Carbon Nanotubes from Solution-wetting Process 82
4.2-3 Carbon Nanotubes from Solvent-annealing Process 87
4.2-4 Mechanism of Chain Orientation Induced by Solvent-annealing Process 92
4.3 Inorganic/Carbon Nanotubes Core-shell Cylinder Structure 101
4.3-1 SiO2/Carbon Core-shell Cylinders via Sol-gel Process 101
4.3-2 Ag/Carbon Core-shell Cylinders via Nanoparticles Synthesis 105
Chapter 5 Conclusions 108
Chapter 6 References 111
Publications 125
(1) Feynman, R. JMEMS 1992, 1, 60.
(2) Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
(3) Osawa, E. Kagaku 1970, 25, 854.
(4) Bochvar, D. A.; Gal’pern, E. G. Proc. Acad. Sci. U.S.S.R. 1973, 209, 239.
(5) Stankevich, I. V.; Nikerov, M. V.; Bochvar, D. A. Russ. Chem. Rev. 1984, 53, 640.
(6) Iijima, S. Nature 1991, 354, 56.
(7) Kelly, B.T. in Physics of Graphite Applied Science, London, 1981.
(8) Field, J. E. in Properties of Diamond Field, J. E. Ed., Academic Press, London, 1979, 281.
(9) Iijima, S.; Ichihashi, T. Nature 1993, 363, 603.
(10) Guo, T.; Nikolaev, P.; Rinzler, A.G.; Tomanek, D.;Colbert, D.T.; Smalley, R.E. J. Phy. Chem. 1995, 99, 10694.
(11) Endo, M.; Takeuchi, K.; Igarashi, S.; kobori, K.; Shiraishi, M.; Kroto, H. W. J. Phys. Chem. Solids 1993, 54, 1841.
(12) Bacon, R. J. Appl. Phys. 1960, 31, 283.
(13) Fan, S. S.; Chapline, M. G.; Franklin, N. R.; Tombler, T. W.; Cassell, A. M.; Dai, H. J. Science 1999, 283, 512.
(14) Tseng, Y.-T.; Tseng, W.-H.; Lin, C.-H.; Ho, R.-M. Adv. Mater. 2007, 19, 3584.
(15) Dekker, C. Phys. Today 1999, 52, 22-28.
(16) Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. In Carbon Nanotubes: Synthesis, Structure, Properties, and Applications Springer, 2000.
(17) Poole, C. P. Jr.; Owens, F. J. In Introduction to Nanotechnology Wiley, New York, 2003.
(18) Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Nature 1996, 381, 678.
(19) Krishnan, A.; Dujardin, E.; Ebbesen, T. W.; Yianilos, P. N.; Treacy, M. M. J. Phys. Rev. B 1998, 58, 14013.
(20) Yu, M.-F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Phys. Rev. Lett. 2000, 84, 5552.
(21) Gao, G. H.; Cagin, T.; Goddard, W. A. Nanotechnology 1998, 3, 184.
(22) Walters, D. A.; Ericson, L. M.; Casavant, M. J.; Liu, J.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Appl. Phys. Lett. 1999, 74, 3803.
(23) Yakobson, B. I.; Smalley, R. E. American Scientist 1997, 85, 324.
(24) Kane, C. L. Mele, E. J. Phys. Rev. Lett. 1997, 78, 1932.
(25) Hong, S.; Myung, S. Nature Nanotechnology 2007, 2, 207.
(26) Thostenson, E. T.; Li, C. Y.; Chou, T. W. Compos. Sci. Tech. 2005, 65, 491.
(27) Rueckes, T.; Kim, K.; Joselevich, E.; Tseng, G. Y.; Cheung, C. L.; Lieber, C. M. Science 2000, 289, 94.
(28) Schadler, L. S.; Giannaris, S. C.; Ajayan, P. M. Appl. Phys. Lett. 1998, 73, 3842.
(29) Shiflett, M. B.; Foley, H. C. Science 1999, 285, 1902.
(30) Pang,J.; Li, X.; Wang, D.; Wu, Z.; John, V. T.; Yang, Z.; Lu, Y. F. Adv. Mater. 2004, 16, 884.
(31) Hinds, B. J.; Chopra, N.; Rantell, T.; Andrews, R.; Gavalas, V.; Bachas, L. G. Science 2004, 303, 62.
(32) Miller, S. A.; Young, V. Y.; Martin, C. R. J. Am. Chem. Soc. 2001, 123, 12335.
(33) Liang, C. D.; Dai, S.; Guiochon, G. A. Anal. Chem. 2003, 75, 4904.
(34) Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001, 412, 169.
(35) Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J. Nature 1997, 386, 377.
(36) Dai, H. J.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E. Nature 1996, 384, 147.
(37) Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C. X.; Khayrullin, I.; Dantas, S. O.; Marti, I.; Ralchenko, V. G. Science 1998, 282, 897.
(38) Liang, C. D.; Hong, K. L.; Guiochon, G. A.; Mays, J. W.; Dai, S. Angew. Chem. Int. Ed. 2004, 43, 5785.
(39) Bansal, R. C.; Donnet, J. B.; Stoeckli, F. in Active Carbon Marcel Dekker, New York, 1988.
(40) Yang, R. T. in Adsorbents: Fundamentals and Applications Wiley-Interscience, New York, 2003.
(41) Gaffney, T. R. Curr. Opin. Solid State Mater. Sci. 1996, 1, 69.
(42) Lamond, T. G.; Marsh, H. Carbon 1964, 1, 293.
(43) Hu, Z. H.; Srinivasan, M. P.; Ni, Y. M.; Adv. Mater. 2000, 12, 62 .
(44) Kyotani, T. Carbon 2000, 38, 269.
(45) Ozaki, J.; Endo, N.; Ohizumi, W.; Igarashi, K.; Nakahara, M.; Oya, A.; Yoshida, S.; Iizuka, T. Carbon 1997, 35, 1031.
(46) Kowalewski, T.; Tsarevsky, N. V.; Matyjaszewski, K.; J. Am. Chem. Soc. 2002, 124, 10632.
(47) Marsh, H.; Rand, B. Carbon 1971, 9, 63.
(48) Tamai, H.; Kakii, T.; Hirota, Y.; Kumamoto, T.; Yasuda, H. Chem. Mater. 1996, 8, 454.
(49) Oya, A.; Yoshida, S.; Alcanizmonge, J.; Linaressolano, A. Carbon 1995, 33, 1085.
(50) Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T. Carbon 1999, 37, 2049.
(51) Pekala, R.W. J. Mater. Sci. 1989, 24, 3221.
(52) Tanaka, S.; Nishiyama, N.; Egashira, Y.; Ueyama, K. Chem. Commun. 2005, 16, 2125.
(53) Liang, C. D.; Dai, S. J. Am. Chem. Soc. 2006, 128, 5316.
(54) Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr. 1986, 352, 3.
(55) Knox, J. H.; Unger, K. K.; Mueller, H. J. Liq. Chromatogr. 1983, 6, 1.
(56) Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M. Adv. Mater. 2001, 13, 677.
(57) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834.
(58) Zhao, D. Y.; Feng, J. L.; Huo, Q. S.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D. Science 1998, 279, 548.
(59) Zhao, D. Y.; Huo, Q. S.; Feng, J. L.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc. 1998, 120, 6024.
(60) Tanev, P. T.; Pinnavaia, T. J. Science 1995, 267, 865.
(61) Tanev, P. T.; Pinnavaia, T. J. Science 1996, 271, 1267.
(62) Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999, 103, 7743.
(63) Jun, S.; Joo, S. H.; Ryoo, R.; Kruk, M.; Jaroniec, M.; Liu, Z.; Ohsuna, T.; Terasaki, O. J. Am. Chem. Soc. 2000, 122, 10712.
(64) Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001, 412, 169.
(65) Kaneda, M.; Tsubakiyama, T.; Carlsson, A.; Sakamoto, Y.; Ohsuna, T.; Terasaki, O.; Joo, S. H.; Ryoo, R. J. Phys. Chem. B 2002, 106, 1256.
(66) Yang, H. F.; Shi, Q. H.; Liu, X. Y.; Xie, S. H.; Jiang, D. C.; Zhang, F. Q.; Yu, C. Z.; Tu, B.; Zhao, D. Y. Chem. Commun. 2002, 23, 2842.
(67) Fan, J.; Yu, C. Z.; Gao, T.; Lei, J.; Tian, B. Z.; Wang, L. M.; Luo, Q.; Tu, B.; Zhou, W. Z.; Zhao, D. Y. Angew. Chem. Int. Ed. 2003, 42, 3146.
(68) Bashir, Z. Carbon 1991, 29, 1081.
(69) Houtz, R. C. Textile Res. 1950, 20, 786.
(70) Grassie, N.; Hay, J. N.; McNeill, I. C. J. Polym. Sci. 1958, 31, 205.
(71) Grassie, N.; McGuchan, R. Eur. Polym. J. 1971, 7, 1091; 1971, 7, 1357; 1971, 7, 1503; 1972, 8, 257; 1972, 8, 865.
(72) Burlant, W. J.; Parsons, J. L. J. Polym. Sci. 1956, 22, 249.
(73) LaCombe, E. M. J. Polym. Sci. 1957, 24, 152.
(74) Coleman, M. M.; Petcavich, R. J. Polym. Sci. Polym. Phys. Edn.1978, 16, 821.
(75) Fochler, H. S.; Mooney, J. R.; Ball, L. E.; Boyer, R. D.; Grasselli, J. G. Spectrochim. Acta. 1985, 41A, 271.
(76) Xue, T. J.; McKinney, M. A.; Wilkie, C. A. Polym. Degrad. Stab. 1997, 58, 193.
(77) Grassie, N.; Hay, J. N. J. Polym. Sci. 1962, 56, 189.
(78) Olive, G. H.; Olive, S. Adv. Polym. Sci. 1979, 32, 12; 1983, 51, 1.
(79) Schurz, J. J. Polym. Sci. 1958, 28, 438.
(80) Berlin, A. A.; Dubinskaya, A. M.; Moshkovski, Y. S. Polym. Sci. USSR. 1966, 6, 2145.
(81) Fester, W. Textil. Rundshau. 1965, 20, 1.
(82) Peebles, L. H.; Brandrup, J. Makromol. Chem. 1966, 98, 189.
(83) Standage, A. E.; Matkowsky, R. D. Eur. Polym. J. 1971, 7, 775.
(84) Conley, R. T.; Bieron, J. F. J. Appl. Polym. Sci. 1963, 7, 1757.
(85) Frigge, K. Büchtemann, A.; Fink, H.-P. Acta. Polym. 1991, 42, 322.
(86) Ferguson, J.; Mahapatro, B. Fibre. Sci. Tech. 1976, 9, 161.
(87) Jellinek, H. H. G.; Das, A. J Polym. Sci. Polym. Chem. Edn. 1978, 16, 2715.
(88) Bahl, O. P.; Mathur, R. B.; Kundra, K. D. Fibre. Sci. Tech. 1981, 15, 147.
(89) Chari, S. S.; Bahl, O. P.; Mather, R. B. Fibre. Sci. Tech. 1981, 15, 153.
(90) Reynolds, W. N. Chem. and Phys. of Carbon, Dekker: New York., 1973.
(91) Reynolds, W. N.; Sharp, J. V. Carbon 1974, 12, 103.
(92) Edie, D. D. Carbon-Carbon Mat. Co. 1993, 19, 37.
(93) Ziabicki, A. in Fundamentals of Fiber Formation Wiley, London, 1976.
(94) Fitzer, E.; Heine, M.; Metzier, W. Int. Kohlenstofftagung, 1986, 853.
(95) Fitzer, E.; Frohs, W.; Heine, M. Carbon, 1986, 24, 387.
(96) Fitzer, E. Carbon 1989, 27, 621.
(97) Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
(98) Lehn, J.-M. in Supramolecular Chemistry, VCH, Weinheim, 1995.
(99) Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Angew. Chem. Int. Ed. 2002, 41, 1705.
(100) Cornelissen, J. J. L. M.; Donners, J. J. J. M.; de Gelder, R.; Graswinckel, W. S.; Metselaar, G. A.; Rowan, A. E.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 2001, 293, 676.
(101) Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C.-C. Ko, B.-T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704.
(102) Hamley, I. W. in Developments in Block Copolymer Science and Technology Wiley Interscience, 2004.
(103) Hamley, I. W. in The Physics of Block Copolymers Oxford University Press, USA, 1998.
(104) Leibler, L. Macromolecules 1980, 13, 1602.
(105) Kowalewski, T.; McCullough, R. D.; Matyjaszewski, K. Eur. Phys. J. E 2003, 10, 5.
(106) Tang, C. B.; Tracz, A.; Kruk, M.; Zhang, R.; Smilgies, D. M.; Matyjaszewski, K.; Kowalewski, T. J. Am. Chem. Soc. 2005, 127, 6918.
(107) Tang, C. B.; Qi, K.; Wooley, K. L.; Matyjaszewski, K.; Kowalewski, T. Angew. Chem. Int. Ed. 2004, 43, 2783.
(108) Leiston-Belanger, J. M.; Penelle, J.; Russell, T. P. Macromolecules 2006, 39, 1766.
(109) Tang, C. B.; Qi, K.; Wooley, K. L.; Matyjaszewski, K.; Kowalewski, T. Angew. Chem. Int. Ed. 2004, 43, 2783.
(110) Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.
(111) Ozin, G. A. Adv. Mater. 1992, 4, 612.
(112) Schnur, J. M. Science 1993, 262, 1669.
(113) Ghadiri, M.; Granja, J. R.; Buehler, L. K. Nature 1994, 369, 301.
(114) Edelmann, F. T. Angew. Chem. 1999, 111, 1473; Angew. Chem., Int. Ed. 1999, 38, 1381.
(115) Schmidt, O. G.; Eberl, K. Nature 2001, 410, 168.
(116) Martin, C. R. Science 1994, 266, 1961.
(117) Martin, C. R. Acc. Chem. Res. 1995, 28, 61.
(118) Hulteen, J. C.; Martin, C. R. J. Mater. Chem. 1997, 7, 1075.
(119) Evans, E.; Brownman, H.; Leung, A.; Needham, D.; Tirrell, D. Science 1996, 273, 933.
(120) Bognitzki, M.; Hou, H.; Ishaque, M.; Frese, T.; Hellwig, M.; Schwarte, C.; Schaper, A.; Wendorff, J. H.; Greiner, A. Adv. Mater. 2000, 12, 637.
(121) Caruso, R. A.; Schattka, J. H.; Greiner, A. Adv. Mater. 2001, 13, 1577.
(122) Mayya, K. S.; Gittins, D. I.; Dibaj, A. M.; Caruso, F. Nano Lett. 2001, 1, 727.
(123) Steinhart, M.; Wendorff, J. H.; Greiner, A.; Wehrspohn, R. B.; Nielsch, K.; Schilling, J.; Choi, J.; Gösele, U. Science 2002, 296, 1997.
(124) Steinhart, M.; Wehrspohn, R. B.; Gösele, U.; Wendorff, J. H. Angew. Chem. Int. Ed. 2004, 43, 1334.
(125) Schnur, J. M. Science 1993, 262, 1669.
(126) Evans, E.; Brownman, H.; Leung, A.; Needham, D.; Tirell, D. Science 1996, 273, 933.
(127) Ghadiri, M.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich, N. Nature 1993, 366, 324.
(128) Steward, S.; Liu, G. Angew. Chem. Int. Ed. 2000, 39, 340.
(129) Whitesides, G. M.; Mathias, J. P.; Seto, C. T. Science 1991, 254, 1312.
(130) Martin, C. R. Science 1994, 266, 1961.
(131) Martin, C. R. Adv. Mater. 1991, 3, 457.
(132) Parthasarathy, R.; Martin, C. R. Nature 1994, 369, 298.
(133) Brumlik, C. J.; Martin, C. R. J. Am. Chem. Soc. 1991, 113, 3174.
(134) Menon, V. P.; Martin, C. R. Anal. Chem. 1995, 67, 1920.
(135) Lakshmi, B.; Dorhoeut, P. K.; Martin, C. R. Chem. Mater. 1997, 9, 857.
(136) Bognitzki, M.; Hou, H.; Ishaque, M.; Frese, T.; Hellwig, M.; Schwarte, C.; Schaper, A.; Wendorff, J. H.; Greiner, A.; Adv. Mater. 2000, 12, 637.
(137) Hou, H.; Jun, Z.; Reuning, A.; Schaper, A.; Wendorff, J. H.; Greiner, A. Macromolecules 2002, 35, 2429.
(138) Bognitzki, M.; Frese, T.; Wendorff, J. H.; Greiner, A. Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 2000, 82, 45.
(139) Reneker, D. H.; Chun, I. Nanotechnology 1996, 7, 216.
(140) Bognitzki, M.; Czado, W.; Frese, T.; Schaper, A.; Hellwig, M.; Steinhart, M.; Greiner, A.; Wendorff, J. H. Adv. Mater. 2001, 13, 70.
(141) Bognitzki, M.; Czado, W.; Frese, T.; Schaper, A.; Hellwig, M.; Steinhart, M.; Greiner, A.; Wendorff, J. H. Polym. Eng. Sci. 2001, 41, 982.
(142) Dersch, R.; Liu, T.; Schaper, A.; Greiner, A.; Wendorff, J. H. J. Polym. Sci. Part. A 2003, 41, 545.
(143) Fox, H.W.; Hare, E. F.; Zisman, W. A. J. Phys. Chem. 1955, 59, 1097.
(144) Myers, D. in Surfaces, Interfaces, and Colloids, Wiley-VCH, New York, 1999.
(145) Wu, S. in Polymer Interfaces and Adhesion, Marcel Dekker, New York, 1982.
(146) de Gennes, P. G. Rev. Mod. Phys. 1985, 57, 827.
(147) Léger, L.; Joanny, J. F. Rep. Prog. Phys. 1992, 55, 431.
(148) Berg, J. C. in Wettability, Marcel Dekker, New York, 1993.
(149) Heslot, F.; Cazabat, A. M.; Levinson, P.; Fraysse, N. Phys. Rev. Lett. 1990, 65, 599.
(150) Ausserré, D.; Picard, A. M.; Léger, L. Phys. Rev. Lett. 1986, 57, 2671.
(151) Léger, L.; Erman, M.; Guinet-Picard, A. M.; Ausserré, D.; Strazielle, G. Phys. Rev. Lett. 1988, 60, 2390.
(152) Heslot, F.; Cazabat, A. M.; Levinson, P. Phys. Rev. Lett. 1989, 62, 1286.
(153) Heslot, F.; Fraysse, N.; Cazabat, A. M. Nature 1989, 338, 640.
(154) Xu, H.; Shirvanyants, D.; Beers, K.; Matyjaszewski, K.; Rubinstein, M.; Sheiko, S. S. Phys. Rev. Lett. 2004, 93, 206103.
(155) Zhang, M. F.; Dobriyal, P.; Chen, J.-T.; Russell, T. P.; Olmo, J.; Merry, A. Nano Lett. 2006, 6, 1075
(156) Chen, J.-T.; Shin, K.; Leiston-Belanger, J. M.; Zhang, M. F.; Russell, T. P. Adv. Func. Mater. 2006, 16, 1476.
(157) Doneet, J. B.; Bansal, R. C. in Carbon Fibers: International Fiber Science and Technology 3 Marcel Dekker, New York 1984.
(158) Setnescu, R.; Jipa, S.; Setnescu, T.; Kappel, W.; Kobayashi, S.; Osawa, Z. Carbon 1999, 37, 1.
(159) Tuinstra, F.; Koenig, J. L. J. Chem. Phys. 1970, 53, 1126.
(160) Li, W. Z.; Zhang, H.; Wang, C. Y.; Zhang, Y.; Xu, L. W.; Zhu, K.; Xie, S. S. Appl. Phys. Lett. 1997, 70, 2684.
(161) Han, C. C.; Lee, J. T.; Chang, H. Chem. Mater. 2001, 13, 4180.
(162) Steinhart, M.; Jia, Z. H.; Schaper, A. K.; Wehrspohn, R. B.; Gösele, U.; Wendorff, J. H. Adv. Mater. 2003, 15, 706.
(163) Avrami, M. J. Chem. Phys. 1939, 7, 1103.
(164) Bassett, D. C. Polymer 2006, 47, 5221.
(165) Blundell, D. J. J. Polym. Sci. Part B: Polymer letters 1966, 4, 481.
(166) Colvin, V. L. Nature 1994, 370, 354.
(167) Cormia, R. L. J. Chem. Phys. 1962, 37, 1333.
(168) Despotopoulou, M. M. Macromolecules 1996, 29, 5797.
(169) Gornick, F. J. Polym. Sci. C 1967, 18, 79.
(170) Hoffman, J. D. J. Res. Nat. Bur. Stand. Sect. A. Phys. Chem. 1975, 79, 671.
(171) Lai, S. L. Phys. Rev. Lett. 1996, 77, 99.
(172) Loo, Y. L. Macromolecules 2002, 35, 2365.
(173) Loo, Y. L. Phys. Rev. Lett. 2000, 84, 4120.
(174) Massa, M. V, Phys. Rev. Lett. 2004, 92, 5509.
(175) Steinhart, M.; Senz, S.; Wehrspohn, R. B.; Gösele, U. Wendorff, J. H. Macromolecules, 2003, 36, 3646.
(176) Lovinger, A. J. J. Polym. Sci., Part B 1980, 18, 739.
(177) Lovinger, A. J.; Wang, T. T. Polymer 1979, 20, 725.
(178) Woo, E.; Huh, J.; Jeong, Y. G.; Shin, K. Phys. Rev. Lett. 2007, 98, 136103.
(179) Avrami, M. J. Chem. Phys. 1939, 7, 1103.
(180) Wunderlich, B. in Macromolecular Physics Academic Press, New York, 1980.
(181) Ho, R.-M.; Wang, T.-C.; Lin, C.-C.; Yu, T.-L. Macromolecules 2007, 40, 2814.
(182) Yu, T.-L.; Huang, B.-H.; Hung, W.-C.; Lin, C.-C.; Wang, T.-C.; Ho, R.-M. Polymer 2007, 48, 4401.
(183) Chen, H.-L.; Hsiao, S.-C.; Lin, T.-L.; Yamauchi, K.; Hasegawa, H.; Hashimoto, T. Macromolecules 2001, 34, 671.
(184) Loo, Y. L.; Register, R. A.; Ryan, A. J. Phys. Rev. Lett. 2000, 84, 4120.
(185) Huang, P.; Zhu, L.; Guo, Y.; Ge, Q.; Jing, A. J.; Chen, W. Y.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Avila-Orta, C. A.; Sics, I. Macromolecules 2004, 37, 3689.
(186) Brandrup, J.; Immergut, E. H. in Polymer Handbook; 3rd Ed. Wiley Interscience: New York, 1989.
(187) Meaurio, E.; Zuza, E.; Sarasua, J. R.; Macromolecules 2005, 9221.
(188) Ryan, A. J.; Hamley, I. W.; Bras, W.; Bates, F. S. Macromolecules 1995, 28, 3860.
(189) Verma, R.; Marand, H.; Hsiao, B. S. Macromolecules 1996, 29, 7767.
(190) Gupta, A.; Harrison, I. R. Carbon 1996, 11, 1427.
(191) Riqueza, E. C.; de Aguiar, A. P.; Aguiar, M. R. M. P.; Maria, L. C. D. Polymer Bulletin 2005, 55, 31.
(192) Bajaj, P.; Roopanwal, A. K. Rev. Macromol. Chem. Phys. 1997, C37, 97.
(193) Kaburagi, M.; Bin, Y. Z.; Zhu, D.; Xu, C. Y.; Matsuo, M. Carbon 2003, 41, 915.
(194) Sonobe, N.; Kyotani, T.; Tomita, A. Carbon 1988, 26, 573.
(195) Shull, K. R. Macromolecules 1992, 25, 2122.
(196) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
(197) Semenov, A. N. Soviet Physics JETP 1985, 61, 733.
(198) Buckley, J. D.; Edie, D. D. in Carbon-carbon materials and composites, Noyes, 1993.
(199) Kyotani, T.; Tsai, L. F.; Tomita, A. Chem. Mater. 1996, 8, 2109.
(200) Callegari, G.; Calvo, A.; Hulin, J. P.; Brochard-Wyant, F. Langmuir 2002, 18, 4795.
(201) Chen, J.-T.; Zhang, M.; Russell, T. P. Nano Lett. 2007, 7, 183.
(202) Tadmor, Z. J. Appl. Polym. Sci. 1974, 18, 1753.
(203) Upadhyay, R. K.; Isayev, A. I.; Shen, S. F. Rheol. Acta. 1981, 20, 443.
(204) Liang, C. H.; Zhang, L. D.; Meng, G. W.; Wang, Y. W.; Chu, Z. Q. J. Non-Crystal. Solids 2000, 277, 63.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top