跳到主要內容

臺灣博碩士論文加值系統

(44.220.249.141) 您好!臺灣時間:2023/12/11 20:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘世惟
研究生(外文):Phan The Duy
論文名稱:HydrogenationReactioninCO2-ExpandedLiquidonMetal-loadingMesoporousCatalysts
指導教授:談駿嵩談駿嵩引用關係
指導教授(外文):Tan, Chung-Sung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:60
中文關鍵詞:氫化化學流體沉積法二氧化碳膨脹溶液中孔洞奈米金屬觸媒
相關次數:
  • 被引用被引用:0
  • 點閱點閱:142
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
Catalytic hydrogenation is commcercially used to reduce the aromatics content from petroleum derivatives such as medium distillates, kerosene and paraffinic solvents. Due to the stringent environmental regulations, supported group VIII metals based catalysts are required to reach high rates of reaction at mild operating conditions. These catalysts are more active than the conventional hydrotreating one, although they are highly sensitive to the sulfur compounds present in the industrial feed-stocks. For these reasons, the liquid-phase hydrogenation of p-xylene (arenes) was studied over Ru and Rh dispersed on mesoporous support (MCM-41, SBA-15,…). The main goal of this work is to compare the behavior of silica supported Ru and Rh catalysts in the p-xylene hydrogenation and examine the effects of CO2-expanded liquid on the reaction performance. It is commonlly thought that rate-enhancement in catalytic hydrogenation involving CO2-expanded media is associated with an increase in the solubility of H2 in the liquid phase. Another explanation that has been proposed for the rate enhancement is that CO2 modifies the reactivity of the substrate via intermolecular interactions with its functional groups. There is also the possibility that CO2 influences the catalytic activity of small supported metal particles.
Chapter 1 – Introduction 1

Chapter 2 - Preview of Literature 2
2.1 Chemical Fluid Deposition – A new way of making mesoporous catalysts 2
2.1.1 Introduction 2
2.1.2 Process 3
2.2 Ru/MCM-41 mesoporous molecular sieve catalyst 7
2.3 Hydrogenation of p-xylene in the related literature 11
2.4 CO2-expanded Solvent Study 19
2.4.1 Advantage 19
2.4.2 Application of CO2-expanded liquid in Hydrogenation Reaction 21

Chapter 3 - Materials – Experimental Operation 24
3.1 Materials 24
3.2 Equipment 24
3.3 Experimental Setup – Operation 25
3.3.1 Catalyst Making by the Batch Mode 26
3.3.2 Catalyst Making by the Recycle Mode 27
3.3.3 Liquid-phase Semi-batch Hydrogenation of p-Xylene and Benzyl Alcohol 28

Chapter 4 – Results – Discussion 30
4.1 Catalysts Characterization 30
4.2 Catalyst Activity 34
A. Effects of Metal Precursors 35
B. Effects of Preparation Methods 39
4.3 Hydrogenation of p-xyelen 42
A. Effects of Hydrogen Pressure 42
B. Effects of different solvents 43
4.4 CO2-expanded liquid behaviour 45

Chapter 5 - Conclusion 54

Preferences 55


Arcoya, A., Seoane, X.L., Gomez-Sainero, L. M., “Activity of Pd/Al2O3 and Ru/Al2O3 Catalysts in the Hydrogenation of o-Xylene - Effect of Thiophene”, Appl. Surf. Sci., 2003, 211, 341-351.

Backman, H.; Neyestanaki, A. K. Mathematical modeling of o-Xylene hydrogenation Kinetic over Pd/Al2O3. J. Catal., 2005, 233, 109-118.

Bertucco, A., Canu, P., Devetta, L., “Catalytic Hydrogenation in Supercritical CO2: Kinetic Measurements in a Gradientless Internal-Recycle Reactor”, Ind. Eng. Chem. Res., 1997, 36, 2626-2633.

Bezanehtak, K., Combes, G. B., Dehghani, F., Foster, N. R., “Vapor-Liquid Equilibrium for Binary System of Carbon Dioxide + Methanol, Hydrogen + Methanol, and Hydrogen + Carbon Dioxide at High Pressure”, J. Chem. Eng. Data, 2002, 47, 161-168.

Blackburn, J. M., Long, D. P., J. J., “Reactive Deposition of Conformal Copper and Nickel Films from Supercritical Carbon Dioxide Solution”, Chem. Mater. 2000, 12, 2625-2631.

Bogel-Lukasik, E., Fonseca, I., Bogel-Lukasik, R., Tarasenko, Y.A., da Ponte, M.N., Paiva, A., Brunner, G., “Phase equilibrium-driven selective hydrogenation of limonene in high-pressure carbon dioxide”, Green Chem., 2007, 9, 427-430.

Chan, J.C., Tan, C.S., “Hydrogenation of Tetralin over Pt/γ-Al2O3 in Trickle-Bed Reactor in the Presence of Compressed CO2”, Energy Fuels, 2006, 20, 771-777.

Chang, C. J., Day, C. Y., Ko, C. M., Chiu, K. L., “Densities and P-x-y diagrams for carbon dioxide dissolution in Methanol, Ethanol, and Acetone Mixtures”, Fluid. Phase. Equilib., 1997, 131, 243-258.

Chapuzet, J.M., Lasia, A., Lessard, J., in Electrocatalysis, (Ed.: Lipkowski, J., Ross, P.N.), Wiley-VCH, New York, 1998, Chapter 4.

Chen, C. W., Yu, H., Huang, M. Y., Jiang, Y. Y., “Catalytic Behavior of silica-supported polysilazane platinum complex in the hydrogenation of xylenes”, Reactive Polymers., 1995, 24, 255-260.

Cominos, V., Gavriilidis, A., “Sublimation and deposition behavior of Palladium (II) Acetylacetonate”, Eur. Phys. J. AP. 2001, 15, 23-33.

Cooper, B. H.; Donnis, B. B. L., “Aromatic saturation of distillates: an overview”, Appl. Catal. A: Gen., 1996, 137, 203-223.

Corma, A., Iborra, S., Miquel, S., Primo, J., “Catalysts for the Production of Fine Chemicals: Production of Food Emulsifiers, Monoglycerides, by Glycerolysis of Fats with Solid Base Catalysts”, J. Catal., 1998, 173, 315-321.

Coman, S., Florea, M., Cocu, F., Pârvulescu, V.I., Jacobs, P.A., Danymah, C., Kaliaguine, S., “Low metal loading Ru-MCM-41 stereocontrolled hydrogenation of prostaglandin intermediates”, Chem. Commun., 1999, 2175-2176.

Cushing, B. L., Kolesnichenko, V. L., O’Connor, C. J., “Recent advances in the liquid-phase syntheses of inorganic nanoparticles”, Chem. Rev., 2004, 104, 3893-3946.

Florea, M., Sevince, M., Pârvulescu, V.I., Lemay, G., Kaliaguine, S., “Ru-MCM-41 catalysts for diastereoselective hydrogenation”, Micropor. Mesopor. Mater., 2001, 44-45, 483-488.

Fredlake, C. P., Muldoon, M. J., Aki, S.N.V.K., Welton, T., Brennecke, J.F., “Solvent strength of ionic liquid/CO2 mixtures”, Phys. Chem. Chem. Phys. 2004, 6, 3280-3285.

Girolami G.S., Gozum J.E., Pollina D.M., Jensen J.A., “ “Tailor” Organometallic as precursor for the chemical vapor deposition of high-purity palldium and platinum thin films” J. Am. Chem. Soc. 1988, 110, 2688-2689.

Green M.L., Gross M.E., Papa L.E., Schnoes K.J., Brasen D., “Chemical vapor deposition of Ruthenium and Ruthenium dioxides films” J. Electrochem. Soc. 1985, 132, 2677-2685.

Han, Y.J., Kim, J.M., Stucky, G.D., “Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15”, Chem. Mater., 2000, 12, 2068-2069.

Hájek, J., Kumar, et al., Mäki-Arvela, P., Salmi, T., Murzin, D.Y., Paseka, I., Heikkilä, T., Laine, E., Laukkanen, P., Väyrynen, J., “Ruthenium-midified MCM-41 mesoporous molecular sieve and Y zeolite catalysts for selective hydrogenation of cinnamaldehyde”, App. Cat. A: Gen., 2003, 251, 385-396.

Hao, J., Xi, C., Cheng, H., Liu, R., Cai, S., Arai, M., Zhao, F., “Influence of Compressed Carbon Dioxide on Hydrogenation Reactions in Cyclohexane with a Pd/C Catalyst”, Ind. Eng. Chem. Res., 2008, 47, 6796-6800.

Hijoshi, N., Inoue, T., Rode, C., Sato, O., Shiral, M., “Tuning cis-decalin Selectivity in Naphthalene Hydrogenation Over Carbon-supported Rhodium Catalyst Under Supercritical Carbon dioxide”, Catal. Lett., 2006, 106, 133-138.

Hitzler, M. G., Poliakoff, M., “Continuous hydrogenation of organic compounds in supercritical fluids”, Chem. Commun., 1997, 17, 1667-1668.

Hitzler, M.G., Smail, F.R., Ross, S.K., Poliakoff, M., “Selective Catalytic Hydrogenation of Organic Compounds in Supercritical Fluids as a Continuous Process”, Org. Process Res. Dev., 1998, 2, 137-146.

Hiyoshi, N., Mine, E., Rode, C.V., Sato, O., Shiral, M., “Low temperature hydrogenation of tetralin over supported rhodium catalysts in supercritical carbon dioxide solvent”, Appl. Catal. A, 2006, 310, 194-198.

Hulea, V., Brunel, D., Galarneau, A., Philippot, K., Chaudret, B., Kooyman, P.J., Fajula, F., “Synthesis of well-dispersed ruthenium nanoparticles inside mesostructured porous silica under mild conditions”, Micropor. Mesopor. Mater., 2005, 79, 185-194.

Inoue, Y., Herrmann, J.M., Schmidt, H., Butt, J.B., Cohen, J.B., Pt/SiO2 IV. Isotopic Exchange Between Cyclopentane and Deuterium, J. Catal., 1978, 53, 401-413.

Jacobson, G.B., Lee, C.T., Johnston, K.P., Tumas, W., “Enhanced Catalyst Reactivity and Separations Using Water/Carbon Dioxide Emulsions”, J. Am. Chem. Soc., 1999, 121, 11902-11903.

Jacqin, M., Jones, D.J., Rozière, J., Albertazzi, S., Vaccari, A., Lenarda, M., Storaro, L., Ganzerla, R., “Novel supported Rh, Pt, Ir and Ru mesoporous aluminosilicates as catalyst for the hydrogenation of naphthalene”, Appl. Catal. A: Gen., 2003, 251, 131-141.

Kamlet, M. J., Abbound, J.L., Taft, R.W., “The solvatochromic comparison method. 6. The .pi.* scale of solvent polarities”, J. Am. Chem. Soc., 1977, 99, 6027-6038.

Kanda, Y., Seino, A., Kobayashi, T, Uemichi, Y., Sugioka, M., “Catalytic performance of Noble Metals Suppported on Mesoporous Silica MCM-41 for Hydrodesulfurization of Benzothiophene”, J. Japan Petro. Inst., 2009, 52, 42-50.

Kang S.Y., Choi K.H., Lee S.K., Hwang C.S., Kim H.J., “Thermodynamic calculations and metallorganic chemical vapor deposition of ruthenium thin films using Bis(ethyl-??cyclopentadienyl)Ru for memory applications” J. Electrochem. Soc. 2000, 147, 1161-1167.

Karonis, D., Lois, E., Stournas, S., Zannikos, F., “Correlations of Exhaust Emissions from a Diesel Engine with Diesel Fuel Properties”, Energy & Fuels, 1998, 12, 230-238.

Kawi, S., Liu, S.Y., Shen, S.-C., “Catalytic decomposition and reduction of N2O on Ru/MCM-41 catalyst”, Catal. Today, 2001, 68, 237-244.

Keane, M. A., “The hydrogenation of o-, m-, and p-Xylene over Ni/SiO2”, J. Catal., 1997, 166, 347-355.

Kho, Y. W., Conrad, D. C., Knutson, B. L., “Phase Equilibria ad Thermophysical Properties of Carbon Dioxide-expanded Fluorinated solvents”, Fluid Phase Equilib., 2003, 2006, 179-193.

Kresge, C.T., Leonomicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism”, Lett. Nat., 1992, 359, 710-712.

Kordikowski, A., Schnek, A. P., Van Nielen, R. M., Peters, C. J., “Volume Expansions and Vapor-Liquid Equilibria of Binary Mixtures of a Variety of Polar Solvents and Certain Near-Critical Solvents”, J. Supercrit. Fluids., 1995, 8, 205-216.

Kumar, N., Mäki-Arvela, P., Hajek, J., Salmi, T., Murzin, D.Y., Heikkilä, T., Laine, E., Laukkanen, P., Väyrynen, J., “Physico-chemical and catalytic properties of Ru-MCM-41 mesoporous molecular sieve catalyst: influence of Ru modification methods”, Micropor. Mesopor. Mater., 2004, 69, 173-179.

Lee J. M., Shin J. C., Hwang C. S., Kim H. J., Suk C. -G., “Preparation of high quality RuO2 electrodes for high dielectric thin films by low pressure metal organic chemical vapor deposition”, J. Vac. Sci. Technolo. A 1998, 16, 2768-2771.

Leu A. D., Chung S. Y. K., Robinson D. B., “The equilibrium phase properties of (carbon dioxide + methanol)”, J. Chem. Thermodyn. 1991, 23, 979-985.

Li, X.-K., Ji, W.-J., Zhao, J., Wang, S.-J., Au, C.-T., “Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15”, J. Cat., 2005, 236, 181-189.

Lim, M.H., Blanford, C.F., Stein, A., “Synthesis of Ordered Microporous Silicates
with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts”, Chem. Mater. 1998, 10, 467.

Liu, Q. S., Takemura, F., Yabe, A., “Solubility of hydrogen in liquid methanol and methyl formate at 20oC to 140oC”, J. Chem. Eng. Data., 1996, 41, 1141-1143.

Long, D. P., Blackburn, J. M., Watkins, J. J., “Chemical fluid deposition: a hybrid technique for low-temperature metallization”, Adv. Mater., 2000, 12, 913-915.

Lu, J., Liotta, C. L., Eckert, C. A., “Spectroscopically Probing Microscopic Solvent Properties of Room-Temperature Ionic Liquids with the Addition of Carbon Dioxide”, J. Phys. Chem. A, 2003, 107, 3995-4000.

McHugh, M. A., Krukonis, V. J., Supercritical Fluid Extraction: Principles and Practice, Butterworth, Boston, 1986.

Mitsui, S., Imaizumi, S., Nanbu, A., Senda, Y., Stereochemistry and Mechanism of the catalytic hydrogenation of dimethylcyclohexenes, J. Catal., 1975, 36, 333-337.

Munson, M.S.B., “Proton Affinities and the Methyl Inductive Effect”, J. Am. Chem. Soc., 1965, 87, 2332-2336.

Music S., Popovoc S., Maljkovic M., Furic K., Gajovic A., “Formation of RuO2 and Ru by thermal decomposition of ruthenium(III)-acetylacetonate” J. Mater. Sci. Lett., 2002, 21, 1131-1134.

Neyestanaki, A.K., Arvela, P.M., Backman, H., Karhu, H., Salmi, T., Vayrynen, J., Murzin, D.Y., Gas-Phase Hydrogenation of o-Xylene over Pt/alumina Catalyst, Activity, and Stereoselectivity, J. Catal., 2003, 218, 267-279.

Neyestanaki, A.K., Maki-Arvela, P., Backman, H., Karhu, H., Salmi, T., Vayrynen, J., Murzin, D.Y., Gas Phase Hydrogenation of o-Xylene over Pt/Knitted Silica-Fiber Catalysts, Ind. Eng. Chem. Res., 2003, 42, 3230-3236.

Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C., Beck, J.S., "Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism", Letters to Nature, 1992, 359, 710-712.

Kodas T. T., Bhaskaran V., Hampden-Smith M. J., “Palladium thin film grown by CVD from (1,1,1,5,5,5-Hexafluoro-2,4-pentanedionato) Palladium(II)”, Chem. Vap. Deposition 1997, 3, 281-286.

Page, S. H., Goates, S. R., Lee, M. L., “Methanol/CO2 Phase behavior in supercritical fluid chromatography and extraction”, J. Supercrit. Fluids., 1991, 4, 109-117.

Panpranot, J., Phandinthong, K., Praserthdam, P., Hasegawa, M., Fujita, S.I., Arai, M., “A comparative study of liquid-phase hydrogenation on Pd/SiO2 in organic solvents and under pressurized carbon dioxide: Activity change and metal leaching/sintering”, J. Mol. Catal. A: Chem., 2006, 253, 20-24.

Puddephatt R.J., Yuan Z., Jiang D., Naftel S.J., Sham T.-K., “Dimethylpalladium(II) complexes as precursor for chemical vapor deposition of palladium”, Chem. Mater., 1994, 6, 2151-2158.

Rahaman, M.V., Vannice, M.A., The hydrogenation of Toluene and o-Xylene, m-Xylene, and p-Xylene over Palladium. 1. Kinetic Behavior and o-Xylene Isomerization, J. Catal., 1991, 127, 251-266.

Rahaman, M.V., Vannice, M.A., The hydrogenation of Toluene and o-Xylene, m-Xylene, and p-Xylene over Palladium. 2. Reaction Model, J. Catal., 1991, 127, 267-275.

Reyes, P., Konig, M. E., Pecchi, G., Concha, I., Granados, M. L., Fierro, J. L. G., “o-Xylene hydrogenation on supported ruthenium catalysts”, Catal. Lett., 1997, 46, 71-75.

Saquing, C.D., Cheng, T.-T., Aindow, M., Erkey, C., “Preparation of platinum/carbon aerogel nanocomposites using a supercritical deposition method”, J. Phys. Chem. B, 2004, 108, 7716-7722.

Saquing, C. D., Kang, D., Aindow, M., Erkey, C., “Investigation of the supercritical deposition of platinum nanoparticles into carbon aerogels”, Microporous Mesoporous Mater., 2005, 80, 11-23.

Sauvage, J.F., Baker, R.H., Hussey, A.S., The hydrogenation of cycloalkenes over Supported Palladium Catalysts, J. Am. Chem. Soc., 1961, 83, 3874-3877.

Seki, T., Grunwaldt, J.-D., van Vegten, N., Baiker, A., “Palladium Supported on an Acidic Resin: A Unique Bifunctional Catalyst for the Continuous Catalytic Hydrogenation of Organic Compounds in Supercritical Carbon Dioxide”, Adv. Synth. Catal., 2008, 350, 691-705.

Smeds, S., Murzim, D., Salmi, T., “Gas Phase Hydrogenation of o- and p-Xylene on Ni/Al2O3 – Kinetic Modeling”, Appl. Catal. A:-Gen., 1997, 150, 115-129.

Stanislaus, A.; Cooper, B. H., “Aromatic Hydrogenation Catalysis: A Review” Catal. Rev.-Sci. Eng., 1994, 36, 75-123.

Toppinen, S., Salmi, T., Rantakyla, T. K., Aittamaa, J., “Liquid-phase hydrogenation kinetics of Aromatic hydrocarbon mixtures”, Ind. Eng. Chem. Res., 1997, 36, 2101-2109.

Viniegra, M., Cordoba, G., Gomez, R., Gas-phase Hydrogenation of o-Xylene Over Palladium Catalysts, J. Mol. Catal., 1990, 58, 107-114.

Wyatt, V. T., Bush, D., Liu, J., Hallett, J. P., Liotta, C. L., Eckert, C.A., “Determination of solvatochromic solvent parameters for the characterization of gas-expanded liquids”, J. Supercrit. Fluids., 2005, 36, 16-22.

Yin, J. Z., Tan, C. S., “Solubility of Hydrogen in Toluene for the Ternary System H2 + CO2 + Tolunen from 305 to 343 K and 1.2 to 10.5 MPa”, Fluid Phase Equil., 2006, 242, 111-117.

Yu, K. M. K., Yeung, C. M. Y., Thompsett, D., Tsang, S. C., “Aerogel-coated metal nanoparticle colloids as novel entities for the synthesis of defined supported metal catalyst”, J. Phys. Chem. B, 2003, 107, 4515-4526.

Xie, X. F., Liotta, C. L., Eckert, C. A., “CO2-protected amine formation from nitrile and Imine Hydrogenation in Gas-Expanded Liquids”, Ind. Eng. Chem. Res., 2004, 43, 7907-7911.

Wandeler, R., Kunzle, N., Schneider, M.S., Mallat, T., Baiker, A., “Continuous Enantioselective Hydrogenation of Ethyl Pyruvate in “Supercritical” Ethane: Relation between Phase Behavior and Catalytic Performance”, J. Catal., 2001, 200, 377-388.

Watkins J.J., McCarthy T.J., “Polymer/Metal nanocomposite synthesis in supercritical CO2”, Chem. Mater., 1995, 7, 1991-1994

Ye, X.-R., Lin, Y., Wang, C., Engelhard, M.H., Wang, Y., Wai, C.M., “Supercritical fluid synthesis and characterization of catalytic metal nanoparitcles on carbon nanotubes”, J. Mater. Chem., 2004, 14, 908-913.

Ye, X.-R., Lin, Y., Wai, C.M., “Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide”, Chem. Commun., 2003, 5, 642-643.

Yoda, S., Hasegawa, A., Suda, H., Uchimaru, Y., Haraya, K., Tsuji, K., Otake, K., “Palladium/polyimide nanocomposite film as a precursor of metal-doped carbon molecular sieve membrane via supercritical impregnation”, Chem. Mater., 2004, 16, 2363-2368.

Yoda S., Takebayashi Y., Sugeta T., Otake K., “Platinum-silica aerogels via supercritical drying and impregnation” J. Non-Crystalline Solids 2004, 350, 320-325.

Yoda S., Mizuno Y., Furuya T., Takebayashi Y., Otake K., Tsuji T., Hiaki T., “Solubility measurement of noble metal acetylacetonates in supercritical carbon dioxide by high performance liquid chromatography (HPLC)”, J. Supercritical Fluids, 2008, 44, 139-147.

Yuan Z., Puddephatt R.J., “Allyl(??diketonato)palladium(II) complexes as precursor for palladium films”, Adv. Mater., 1994, 6, 51-54.

Zhang, Y., Erkey, C., “Preparation of supported metallic nanoparticles using supercritical fluids: A review”, J. Supercritical Fluids, 2006, 38, 252-267.

Zhang, Y., Kang, D., Saquing, C., Aindow, M., Erkey, C., “Supported platinum nanoparticles by supercritical deposition”, Ind. Eng. Chem. Res., 2005, 44, 4161-4164.

Zhang, Y., Kang, D., Aindow, M., Erkey, C., “Preparation and characterization of Ruthenium/Carbon Aerogel nanocomposites via a supercritical fluid route”, J. Phys. Chem. B, 2005, 109, 2617-2624.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top