(3.239.192.241) 您好!臺灣時間:2021/03/02 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳欣瑜
論文名稱:以奈米碳管經由濕式塗佈方式製備透明導電膜之分析
指導教授:劉大佼劉大佼引用關係
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:110
中文關鍵詞:奈米碳管透明導電膜濕式塗佈
相關次數:
  • 被引用被引用:0
  • 點閱點閱:811
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:184
  • 收藏至我的研究室書目清單書目收藏:2
本論文研究以濕式塗佈製作透明導電膜,主要材料為具有許多優異特性之材料—奈米碳管。奈米碳管不論是在機械、熱傳及電學特性上都有廣泛的研究及多功能的應用。在透明導電膜上的應用,可使用濕式塗佈製程,塗佈於可撓性基板且不需在高溫下操作,使生產成本降到最低。
研究共分為兩個部份,第一個部份是探討利用表面張力梯度形成的表面張力效應,建立出中間薄、周圍厚的類蜂巢結構,使透明導電膜達到高導電率及高穿透率的性質。實驗共使用三種溶劑系統,分別是去離子水、甲苯及酒精,觀察各系統在乾燥過程的現象並探討塗佈參數的影響,得到當溫差大、溼膜厚、黏度小、溶劑揮發性高者,容易產生類蜂巢結構,在本研究中,當溶劑系統為甲苯及酒精時,易產生毫米等級的類蜂巢結構。
第二個部份直接使用奈米碳管塗佈透明導電膜,調整各實驗參數以建立奈米碳管的塗佈視窗,並尋找適當的乾燥溫度、溼膜厚度等製程參數,測量各種透明導電膜之關鍵特性,如穿透率、電阻、均勻度及黏著性等等,待製程參數等條件確立後,比較不同塗佈方式對透明導電膜的影響,並結合塗佈產品的特性,進而找出最佳的塗佈方式及條件。最後將各製程之參數以無因次群—雷諾數表示,並找出雷諾數與透明導電膜之穿透率、電阻等特性之關係,得到當雷諾數越大,塗佈之透明導電膜的穿透率與電阻皆會下降的結果。
目錄
摘要 I
目錄 II
圖目錄 IV
表目錄 VIII
1. 第一章 緒論 1
1-1 透明導電膜現況 1
1-2 透明導電膜之塗佈方式 2
1-3 研究動機與研究問題 5
2. 第二章 文獻回顧 7
2-1 透明導電膜 7
2-1-1 透明導電膜之簡介 7
2-1-2 透明導電膜的材料 9
2-2 奈米碳管 15
2-2-1 奈米碳管之簡介 15
2-2-2 奈米碳管之分散 17
2-2-3 奈米碳管在透明導電玻璃之塗佈 20
2-3 表面張力效應 29
3. 第三章 研究方法 36
3-1 實驗藥品 36
3-2 實驗儀器及分析儀器 40
3-3 實驗步驟—表面張力效應實驗 54
3-3-1 溶液配置 54
3-3-2 溶液物性量測 55
3-3-3 實驗步驟及裝置圖 56
3-4 實驗步驟—奈米碳管塗佈實驗 58
3-4-1 溶液配置 58
3-4-2 溶液物性量測 58
3-4-3 實驗步驟 58
4. 第四章 結果與討論Ⅰ—表面張力效應實驗 62
4-1 單一溶劑系統 62
4-1-1 去離子水系統 62
4-1-2 甲苯系統 65
4-2 雙溶劑成份系統—酒精水溶液 69
4-3 Marangoni number試算 74
5. 第五章 結果與討論Ⅱ—奈米碳管塗佈實驗 76
5-1 實驗前確認—塗液分散性及塗膜均勻性 76
5-2 繞線棒塗佈與狹縫式塗佈之比較 78
5-3 塗佈參數 80
5-3-1 乾燥溫度 82
5-3-2 乾膜厚度 84
5-3-3 塗佈速度 91
5-3-4 黏著性 95
5-4 無因次群分析—雷諾數分析 97
5-4-1 乾燥溫度 97
5-4-2 乾膜厚度 98
5-4-3 塗佈速度 101
6. 第六章 結論 103
7. 第七章 參考文獻 105
1 Badeker, K., Concerning the electricity conductibility and the thermoelectric energy of several heavy metal bonds. Ann Phys (Leipzig) 22 (4), 749 (1907).
2 Rupprecht, Ghorg, Untersuchungen der elektrischen und lichtelektrischen Leitfahigkeit dunner Indiumoxyd-schichten. Zeitschrift fur Physik 139, 504-517 (1954).
3 Vossen, J. L., RF sputtered transparent conductors the system In2O3-SnO2. Rca Review 32, 289-296 (1971).
4 Fraser, D. B. and Cook, H. D., Highly conductive, transparent films of sputtered InSnO2. Journal of The Electrochemical Society 119, 1368 (1972).
5 Nath, P. and Bunshah, R. F., Preparation of In2O3 and tin-doped In2O3 films by a novel activated reactive evaporation technique. Thin Solid Films 69 (1), 63-68 (1980).
6 Ray, S., Banerjee, R., Basu, N., Batabyal, A. K., and Barua, A. K., Properties of tin doped indium oxide thin films prepared by magnetron sputtering. Journal of Applied Physics 54, 3497 (1983).
7 曲喜新,楊邦朝,姜節儉, 電子薄膜材料. 北京科學出版社(1996).
8 Zhang, D. H. and Ma, H. L., Scattering mechanisms of charge carriers in transparent conducting oxide films. Applied Physics A: Materials Science & Processing 62 (5), 487-492 (1996).
9 De, S., Higgins, T. M., Lyons, P. E., Doherty, E. M., Nirmalraj, P. N., Blau, W. J., Boland, J. J., and Coleman, J. N., Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. Acs Nano 3 (7), 1767-1774 (2009).
10 楊明輝, 金屬氧化物透明導電材料的基本原理. 工業材料雜誌 179, 134 (2001).
11 Minami, T., New n-type transparent conducting oxides. MRS Bulletin 25 (8), 38-44 (2000).
12 Ozgur, U., Alivov, Y. I., Liu, C., Teke, A., Reshchikov, M. A., Do an, S., Avrutin, V., Cho, S. J., and Morkoc, H., A comprehensive review of ZnO materials and devices. Journal of Applied Physics 98, 041301 (2005).
13 楊明輝, 透明導電膜. 藝軒圖書出版社(2006).
14 Kroto, H. W., Allaf, A. W., and Balm, S. P., C60: Buckminsterfullerene. Chemical Reviews 91 (6), 1213-1235 (1991).
15 韋進全,張先鋒,王坤林, 奈米碳管巨觀體:物理化學特性與應用. 五南圖書出版公司(2009).
16 Iijima, S., Helical microtubules of graphitic carbon. Nature 354 (6348), 56-58 (1991).
17 Ebbesen, T. W., Lezec, H. J., Hiura, H., Bennett, J. W., Ghaemi, H. F., and Thio, T., Electrical conductivity of individual carbon nanotubes. Nature 382, 54 - 56 (1996).
18 鄧至均,黃彥瑋,馬振基, 奈米碳管之分散及表面官能基化技術. 化工資訊與商情 75, 26-36 (2009).
19 Huang, W., Lin, Y., Taylor, S., Gaillard, J., Rao, A. M., and Sun, Y. P., Sonication-assisted functionalization and solubilization of carbon nanotubes. Nano Letters 2 (3), 231-234 (2002).
20 Kang, Y. and Taton, T. A., Micelle-encapsulated carbon nanotubes: a route to nanotube composites. Journal of the American Chemical Society 125 (19), 5650-5651 (2003).
21 Liu, J., Rinzler, A. G., Dai, H., Hafner, J. H., Bradley, R. K., Boul, P. J., Lu, A., Iverson, T., Shelimov, K., and Huffman, C. B., Fullerene pipes. Science 280 (5367), 1253 (1998).
22 Kaempgen, M., Duesberg, G. S., and Roth, S., Transparent carbon nanotube coatings. Applied Surface Science 252 (2), 425-429 (2005).
23 Jung de Andrade, M., Dias Lima, M., Skakalova, V., Perez Bergmann, C., and Roth, S., Electrical properties of transparent carbon nanotube networks prepared through different techniques. physica status solidi (RRL)-Rapid Research Letters 1 (5) (2007).
24 Spotnitz, M. E., Ryan, D., and Stone, H. A., Dip coating for the alignment of carbon nanotubes on curved surfaces. Journal of Materials Chemistry 14 (8), 1299-1302 (2004).
25 Ng, M. H. A., Hartadi, L. T., Tan, H., and Poa, C. H. P., Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates. Nanotechnology 19 (20), 5 (2008).
26 Yu, X., Rajamani, R., Stelson, K. A., and Cui, T., Fabrication of carbon nanotube based transparent conductive thin films using layer-by-layer technology. Surface & Coatings Technology 202 (10), 2002-2007 (2008).
27 Rahy, A., Bajaj, P., Musselman, I. H., Hong, S. H., Sun, Y. P., and Yang, D. J., Coating of carbon nanotubes on flexible substrate and its adhesion study. Applied Surface Science 255 (15), 7084-7089 (2009).
28 Schmidt, R. H., Kinloch, I. A., Burgess, A. N., and Windle, A. H., The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films. Langmuir 23 (10), 5707-5712 (2007).
29 Dan, B., Irvin, G. C., and Pasquali, M., Continuous and scalable fabrication of transparent conducting carbon nanotube films. Acs Nano 3 (4), 835-843 (2009).
30 Fan, S., Jiang, K., Liu, K., Liu, L., Zhai, Y., Zhao, Q., Fan, S. S., Jiang, K. L., Zhai, Y. C., and Zhao, Q. Y.,Carbon nanotube composite material used as transparent conductive film, comprises several carbon nanotubes in which ends are joined together by van der Waals attractive force and conductive coating layer disposed on carbon nanotube Patent No. EP2085976-A1 (2009).
31 Green, A. A., Hersam, M. C., Green, A., and Hersam, M.,Colored transparent conductive film comprises single-walled carbon nanotubes, and has a visible color, and specified average transmittance in the visible spectrum and sheet resistance Patent No. US2009061194-A1 (2009).
32 Kawahara, Y. and Takada, H.,Electroconductive composition used for electroconductive film for transparent electrodes and touch panel, contains conductive polymer, ionic liquid, and carbon nanotube having abundance of primary particles above specified value Patent No. JP2009035619-A (2009).
33 Shimizu, K.,Transparent conductive film for optical device e.g. touch panel, has carbon nanotube layer that is contacted and laminated with electroconductive polymeric layer Patent No. JP2009211978-A (2009).
34 Glatkowski, P. J.,Electrically conductive film for use in transparent conductive coatings, comprises nanotubes having specified outer diameter Patent No. WO200276724-A (2002).
35 Ki, H. S., Yeum, J. H., Choe, S., Kim, J. H., and Cheong, I. W., Fabrication of transparent conductive carbon nanotubes/polyurethane-urea composite films by solvent evaporation-induced self-assembly (EISA). Composites Science and Technology 69 (5), 645-650 (2009).
36 Kang, C. S., Kim, J. H., Kim, J. S., Kwak, K. N., Song, S. M., Kang, C., Kim, J., Kwak, K., and Song, S.,Conductive material used in e.g. transparent or opaque electrodes, comprises a polymer resin having an amine group; and carbon nanotubes chemically bonded with carboxyl group and having specific peel index Patent No. WO2009078621-A2 (2009).
37 Bae, S. Y., Chang, Y. K., Geng, H. Z., Lee, Y. H., Lee, Y. S., Bae, S., Chang, Y., Geng, H., and Lee, Y.,Fabrication of transparent conductive film, e.g. for touch screens, comprises acid-treating carbon nanotube composite film to form transparent electrode on base substrate by dipping film in acid solution Patent No. WO2009064133-A2 (2009).
38 Cucksey, C. M., Elhard, J. D., Heintz, A. M., Moore, B. P., and Risser, S. M.,Carbon nanotube network film, useful in carbon nanotube network film composition, comprises a tangled mass of carbon nanotube bundles in the form of a film disposed on a substrate Patent No. WO2009055831-A1 (2009).
39 Mata, J., Sekiguchi, H., and Tsukamoto, J.,Substrate with transparent conductive film for touch panel, has thermosetting resin film containing melamine resin, transparent support base material, and carbon nanotube electroconductive film Patent No. WO2009107758-A1 (2009).
40 Usui, H.,Transparent conductive substrate for liquid crystal display element and photoelectric transducer, has wiring portion that consists of carbon nanotube mounted on transparent conductive film, without using a binder Patent No. JP2009021129-A (2009).
41 Morimoto, Y., Kubosaki, N., and Tsunoda, Y.,Ultraviolet curing conductive paint for manufacturing ultraviolet curing electroconductive transparent coated film, contains ultraviolet curable resin, carbon nanotube, amine modified acryl polymer, and photoinitiator Patent No. JP2008179787-A (2008).
42 Luo, J., Arthur, D. J., and Glatkowski, P. J.,Conductive coating or film, useful for display and electronic applications, comprises carbon nanotubes and a fluoromonomer or a fluoropolymer binder Patent No. US2006113510-A1 (2006).
43 Leal, L. G., Advanced transport phenomena: fluid mechanics and convective transport processes. Cambridge Univ Pr,(2007).
44 Pearson, J. R. A., On convection cells induced by surface tension. J. Fluid Mech 4, 489-500 (1958).
45 Thiele, U. and Eckert, K., Stochastic geometry of polygonal networks: An alternative approach to the hexagon-square transition in Benard convection. Physical Review E 58 (3), 3458-3468 (1998).
46 Maillard, M., Motte, L., Ngo, A. T., and Pileni, M. P., Rings and hexagons made of nanocrystals: a Marangoni effect. J. Phys. Chem. B 104 (50), 11871-11877 (2000).
47 Stowell, C. and Korgel, B. A., Self-assembled honeycomb networks of gold nanocrystals. Nano Letters 1 (11), 595-600 (2001).
48 Zhang, N., Chao, D. F., and Yang, W. J., Convective instability in transient evaporating thin liquid layers. Journal of Non-Equilibrium Thermodynamics 27 (1), 71-89 (2002).
49 Sakurai, S., Furukawa, C., Okutsu, A., Miyoshi, A., and Nomura, S., Control of mesh pattern of surface corrugation via rate of solvent evaporation in solution casting of polymer film in the presence of convection. Polymer 43 (11), 3359-3364 (2002).
50 楊之光, 先進狹縫式塗佈研究. 國立清華大學,博士論文(2001).
51 陳力俊, 材料電子顯微鏡學. 儀器科技研究中心(1994).
52 Brennen, C. E., Fundamentals of multiphase flow. Cambridge Univ Pr,(2005).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔