(3.238.186.43) 您好!臺灣時間:2021/02/25 02:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林曄生
研究生(外文):Lin, Yeh-Sheng
論文名稱:FabricationofLong-RangeOrderedNanocrystalAssemblyandSupercrystalsonSubstratesUsingGoldNanocubes,OctahedraandRhombicDodecahedraasBuildingBlocks
論文名稱(外文):用奈米金立方體、八面體及菱形十二面體在基板上製備大範圍且有序的奈米晶體排列和超級晶體
指導教授:黃暄益
指導教授(外文):Huang, Michael Hsuan-Yi
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:71
中文關鍵詞:排列奈米超級晶體
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
We have successfully fabricated long-range (~2.5 mm) ordered gold nanocube (~40 nm) and octahedra (~40 nm) assembled structures on the substrates at room temperature in moist condition. Gold nanocube (~40 nm) and rhombic dodecahedral nanocrystals (~40 nm) at high CTAC and particle concentrations can form respectively cubic or octahedral supercrystals on a wafer at 90 ºC in an environment with high humdity. Rhombic dodecahedral (~40 nm) and octahedral (~40 nm) nanocrystals at high CTAC and particle concentrations can assemble into platelike and rhombic dodecahedral supercrystal at room temperature under this humid condition. It may not form supercrystals using larger nanocubes (~75 nm), octahedral (~65 nm) and rhombic dodecahedral (~55 nm) nanocrystals. The key conditions for fabricating supercrystals are size–dependent, high surfactant and particle concentrations, and a sufficient long time for nanocrystal assembly.
We have found two types of gold nanocube assembly. At room temperature, each cube in the second layer sits right in the center of four cubes underneath, while nanocubes contact each other by face-to-face fashion at high temperature. There are three types of octahedral gold nanocrystal assembled structures. One packing structure is through faces contacting the substrate. Another assembled structure is with their edges contacting the underlying substrate. The third assembled structure is unstable in which the octahedra contact each other exactly face to face and five octahedra organize into a unit. No strong force exists between layer 1 and layer 2.
Rhombic dodecahedra (~40 nm) and ordered nanocube (~40 nm) assembly may form “hot spots” and have been shown to exhibit good SERS enhancement, while disordered nanocube and fused octahedral (~40 nm) structures do not. UV-vis spectra of gold nanocube assembly show absorption bands in the near-infrared region .

Abstract of the Thesis ……………………………………………… i
Acknowledgement ……………………………………………… iv
Table of contents ……………………………………………… vi
List of Figures ……………………………………………… viii
List of Schemes ……………………………………………… xii

CHAPTER 1 Methods for the Fabrication of Ordered Nanostructure Assembly and Their Applications

1.1 Introduction 1
1.1.2 Methods for Fabricating Assembly of Nanocrystals 3
1.2.1 Langmuir−Blodgett (LB) Technique 3
1.2.2 Evaporation-Based Technique 6
1.2.3 Electrostatic Interaction 12
1.2.4 Solvophobic Interaction 14
1.3 Properties and Applications 16
1.4 References 22

CHAPTER 2 Fabrication of Long-Range Ordered Nanocrystal Assembly and Supercrystals on Substrates Using Gold Nanocubes, Octahedra and Rhombic Dodecahedra as Building Blocks
2.1 Introduction 25
2.2 Experimental Section 27
2.2.1 Chemicals 27
2.2.2 Synthesis of Gold Seeds 27
2.2.3 Synthesis of Cubic Nanocrystals (40 nm) 27
2.2.4 Synthesis of Rhombic Dodecahedral Gold Nanocrystals (40 nm) 28
2.2.5 Synthesis of Larger Cubic and Rhombic Dodecahedral Gold Nanocrystals 28
2.2.6 Synthesis of Octhedral Gold Nanocrystals 29
2.2.7 Long-Range Ordered Self-Assembly of Gold Nanocubes 30
2.2.8 Instrumentation 33
2.3 Results and Discussion 34
2.4 Conclusion 68
2.5 References 69

LIST OF FIGURES
CHAPTER 1 Methods for the Fabrication of Ordered Nanostructure Assembly and Their Applications
Figure 1.1 The setup of LB technique and SEM images of superlattices composed of truncated cubes, cuboctahedra and octahedra of silver nanocrystals. 5
Figure 1.2 The mechanism of Au nanocrystal self-assembly during the drying process. 8
Figure 1.3 Schematic illustration of a Au nanorod and SEM images of ordered Au nanorod superstructures. 9
Figure 1.4 SEM images of the ordered assembly formed from polyhedra, nanocubes, and bipyramids. 10
Figure 1.5 FE-SEM images of four different alkyl chain length thiolate- stabilized Au nanoparticle superlattices and their diffraction patterns. 11
Figure 1.6 Scheme of AuMUA and AgTMA nanoparticles and SEM images of AuMUA-AgTMA crystals. 13
Figure 1.7 The crystallization progress and SEM images of octahedral MnO nanocrystals formed cubic supercrystals. 15
Figure 1.8 Snapshots of cuboctahedral nanocrystals superlattice and corresponding SEM images at surface pressures of = 0 , 1.0 and 14 mN m–1. 19
Figure 1.9 Reflectance spectra of cubes, cuboctahedra, and octahedra superlattice, and Dark-field scattering spectra for the cuboctahedra monolayer. 20
Figure 1.10 Extinction spectra of four different chain length thiolate- stabilized Au nanoparticle superlattices and isolated Au nanoparticles. 21
Figure 1.11 I-V curves of silver nanoparticle deposited on Au(111) substrate. 21








CHAPTER 2 Fabrication of Long-Range Ordered Nanocrystal Assembly and Supercrystals on Substrates Using Gold Nanocubes, Octahedra and Rhombic Dodecahedra as Building Blocks
Figure 2.1 The setup for assembling nanocrystals and OM image of the ordered gold nanocube assembly on a substrate. 32
Figure 2.2 Optical microscopy images for gold nanocube assembly after drying. 35
Figure 2.3 SEM images of assembled structures from gold nanocubes with different surfactant concentrations or drying times. 39
Figure 2.4 SEM image of gold cubic supercrystals at 90 °C. 42
Figure 2.5 SEM images and schematic drawings of two types of gold nanocube assembly. 43
Figure 2.6 SEM images of long-range ordered assembled structures from octahedral gold nanocrystals. 49
Figure 2.7 SEM images and schematic drawings of the three types of self-assembled structures of the octahedral gold nanocrystals. 50
Figure 2.8 SEM images and schematic drawings of octahedral gold supercrystals. 53
Figure 2.9 SEM images and schematic drawings of platelike gold supercrystals. 54
Figure 2.10 SEM images of rhombic dodecahedral gold supercrystals. 55
Figure 2.11 SEM images of rhombic dodecahedral and octahedral gold assembled structures at room temperature in a drying oven. 57
Figure 2.12 SEM images of assembled structures from larger gold nanocubes nanocrystals. 60
Figure 2.13 SEM images of assembled structures from larger rhombic dodecahedral gold nanocrystals. 61
Figure 2.14 SEM images of 2D monolayer assembly from larger octahedral gold nanocrystals. 62
Figure 2.15 SERS spectra of four different assembled structures and corresponding SEM images. 65
Figure 2.16 UV-vis spectra of ordered gold nanocube assembly and corresponding SEM images. 67




LIST OF SCHEMES
CHAPTER 2 Fabrication of Long-Range Ordered Nanocrystal Assembly and Supercrystals on Substrates Using Gold Nanocubes, Octahedra and Rhombic Dodecahedra as Building Blocks
Scheme 2.1 Schematic illustration of the synthesis procedure for preparing Au nanocrystals with different sizes and shapes. 30
Scheme 2.2 Schematic illustration of the procedure for preparing Au colloidal solution containing different CTAC concentrations. 32
Scheme 2.3 The mechanism of gold nanocrystal self-assembly during the slow drying process at high surfactant concentration. 36
Scheme 2.4 Schematic illustration of ordered gold nanoparticle assembly by entropy-driven formation. 42

(1) Lin, X. M.; Jaeger, H. M.; Sorensen, C. M.; Klabunde, K. J. J. Phy. Chem. B 2001, 105, 3353.
(2) Chen, C. F.; Tzeng, S. D.; Chen, H. Y.; Lin, K. J.; Gwo, S. G. J. Am. Chem. Soc. 2008, 130, 824.
(3) Zhuang, Z.; Peng, Q.; Zhang, B.; Li, Y. J. Am. Chem. Soc. 2008, 130, 10482.
(4) Tao, A.; Sinsermsuksakul, P.; Yang, P. D. Nat. Nanotechnol. 2007, 2, 435.
(5) Ming, T.; Kou, X. S.; Chen, H. J.; Wang, T.; Tam, H.-L.; Cheah, K.-W.; Chen, J.-Y.; Wang, J. F. Angew. Chem., Int. Ed. 2008, 47, 9685.
(6) Lu, W. G.; Liu, Q. S.; Sun, Z. Y.; He, J. B.; Ezeolu C. D.; Fang, J. Y. J. Am. Chem. Soc. 2008, 130, 6983.
(7) Zhang, L. H.; Wu, J. J.; Liao, H. B.; Hou, Y. L.; Gao, S. Chem. Commun. 2009, 4378.
(8) Bishop, K. J. M.; Wilmer, C. E.; Soh, S.; Grzybowski, B. A. Small 2009, 5, 1600.
(9) Xie, S.; Zhou, X.; Han, X.; Kuang, Q.; Jin, M.; Jiang, Y.; Xie; Z.; Zheng, L. J. Phys. Chem. C. 2009, 113, 19107.
(10) Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. Anal. Chem. 2005, 77, 3261.
(11) Mulvihill, M.; Tao, A.; Benjauthrit, K.; Arnold, J.; Yang, P. Angew. Chem., Int. Ed. 2008, 47, 6456.
(12) Chen, H. J.; Sun, Z. H.; Ni, W. H.; Woo, K. C.; Lin, H.-Q.; Sun L. D.; Yan, C. H.; Wang J. F. Small 2009, 5, 2111.
(13) Yang, S. C.; Kobori, H.; He, C. L.; Lin, M. S.; Chen, H. Y.; Li, C. C.; Kanehara, M.; Teranishi, T.; Gwo, S. G. Nano Lett. 2010, 10, 632.
(14) Mayer, K. M.; Lee, S.; Liao, H. W.; Rostro, B. C.; Fuentes, A.; Scully, P. T.; Nehl, C. L.; Hafner, J. H. ACS Nano 2008, 2, 687.
(15) Durr, N. J.; Larson, T.; Smith, D. K.; Korgel, B. A.; Sokolov, K.; Ben-Yakar, A. Nano Lett. 2007, 7, 941.
(16) Chon, J. W. M.; Bullen, C.; Zijlstra, P.; Gu, M. Adv. Funct. Mater. 2007, 17, 875.
(17) Mühlschlegel, P.; Eisler, H.-J.; Martin, O. J. F.; Hecht, B.; Pohl, D. W. Science 2005, 308, 1607.
(18) Wu, H. L.; Kuo, C. H.; Huang, M. H. Langmuir, 2010, 26, in press.
(19) Hu, H.; Larson, R. G. Langmuir 2005, 21, 3963.
(20) Whetten, R. L. Nat. Mater. 2006, 5, 259.
(21) Sau, T. K.; Murphy, C. J. Langmuir 2005, 21, 2923.
(22) Asakura, S.; Oosawa, F. J. Chem. Phys. 1954, 22, 1255.
(23) Chang, C.-C., Wu, H.-L., Kuo, C.-H.; Huang, M. H. Chem. Mater. 2008, 20, 7570.
(24) Thuy, N. T. B.; Yokogawa, R.; Yoshimura, Y.; Fujimoto, K.; Koyano, M.; Maenosono, S. Analyst 2010, 135, 595.
(25) Tayor, C. E.; Pemberton, J. E.; Goodman, G. G.; Schoenfisch, M. H. Appl. Spectrosc. 1999, 53, 1212.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 一、立方體型態演繹至六足體之氧化銀奈米晶體的合成及其表面特性二、研究多截面金奈米晶粒核的形狀以及表面晶面對於形成氧化亞銅包金核殼異質結構的影響
2. 在酸性及鹼性下製備高產率且可調控徑長比的金奈米棒和針對超長金奈米棒的改善合成方法
3. Octahedral Gold Nanocrystal-templated Growth of Au-Pd Core-Shell Heterostructures with Systematic Shape Evolution from Octahedral to Concave Cubic Structures and their Catalytic Activity
4. 以金奈米立方體製備二十四面體和凹面八面體之鈀包金核殼奈米結構與其高效率的電化學活性
5. 高產量高長寬比金奈米棒的製備與多分支金奈米粒子的直接合成
6. 具形態控制的氧化亞銅奈米晶體及氧化亞銅包金之核殼異質結構之合成及其物理與化學性質的探討
7. 奈米金屬結構中拉曼散射增強之實驗研究
8. 以表面聲波研究奈米金屬顆粒陣列之表面電漿子光導電特性
9. 氧化錫奈米結構之合成、特性及應用
10. (Bi,Sb)2Te3奈米結構的熱電性質與金奈米棒的光熱性質之研究與應用
11. 寬能隙半導體奈米材料之合成及其應用於染料敏化太陽能電池
12. 奈米金屬線結構在光電元件之研究與應用
13. 結合磁性奈米粒子與免疫親和毛細管電泳技術並應用於生物素之檢測
14. 新型太陽能電池有機染料苯并[c]噻吩之合成研究
15. 以氟標記進行蛋白質固定化
 
系統版面圖檔 系統版面圖檔