1.Bella, J., and Eaton, M. (1994) Crystal and molecular structure of a collagen-like peptide at 1.9 Å resolution, Science 266, 75-81.
2.Stefani, M., and Dobson M. C. (2003) Protein aggregation and aggregate toxicity:new insights into protein folding, misfolding diseases and biological evolution, J. Mol. Med. 81, 678-699.
3.Selkoe, D. J. (2004) Cell biology of protein misfolding: The examples of Alzheimer's and Parkinson's diseases, Nat. Cell Bio. 6, 1054-1061.
4.Irvine, B. G., El-Agnaf, M. O., Shankar, M. G., Walsh, M. D. (2008) Protein aggregation in the brain : the molecular basis for Alzheimer's and Parkinson's diseases, Mol. Med. 14, 451-464.
5.Höppener, W.J., Ahrén, B., Lips, J. C. (2000) Islet amyloid and type 2 diabetes mellitus, N. Engl. J. Med. 343, 411–419.
6.Truant, R., Atwal, R. S., Desmond, C., Munsie, L., and Tran, T. (2008) Huntington’s disease: revisiting the aggregation hypothesis in polyglutamine neurodegenerative diseases, FEBS Journal 275, 4252-4262.
7.Fradinger, E. A., Monien, H. B., Urbanc, B., Lomakin, A., Tan Miao, Li Huiyuan, Spring, M. S., Condron, M. M., Cruz, L., Xie Cui-Wei, Benedek, B. G., and Bitan, G. (2008) C-terminal peptides coassemble into Aβ42 oligomers and protect neurons against Aβ42-induced neurotoxicity, Proc. Natl. Acad. Sci. 105, 14175-14180.
8.Soto, C., Sigurdsson, E. M., Morelli, L., Asok Kumar, R., Castano, E. M., and Frangione, B. (1998) β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis : Implications for Alzheimer's therapy, Nat. Med. 4, 822-826.
9.Sciarretta, K. L., Boire, A., Gordon, D. J., and Meredith, S. C. (2006) Spatial Separation of β-Sheet Domains of β-Amyloid : Disruption of Each β-Sheet by N-Methyl Amino Acids†, Biochemistry 45, 9485-9495.
10.Jellinger, K. A. (2006) Alzheimer 100 – highlights in the history of Alzheimer research. J. Neural Transm. 113, 1603-1623.
11.洪成治. (2000) 阿茲海默氏症的基因檢測與遺傳諮詢.應用心理研究,第七期,143-155.
12.吳志偉. (2003) 腦區域性貝它糊蛋白結合蛋白之純化及其功能之研究,碩士論文,國立成功大學細胞生物與解剖學研究所.13.Murray, M. M., Bernstein, S. L., Nyugen, V., Condron, M. M., Teplow, D. B., and Bowers, M. T. (2009) Amyloid β Protein: Aβ40 Inhibits Aβ42 Oligomerization, J. Am. Chem. Soc. 131, 6316-6317.
14.Takahashi, T., and Mihara, H. (2008) Peptide and Protein Mimetics Inhibiting Amyloid β-Peptide Aggregation, Acc. Chem. Res. 41, 1309-1318.
15.Lührs, T., Ritter, C., Adrian, M., Riek-Loher, D., Bohrmann, B., Döbeli, H., Schubert, D., and Riek, R. (2005) 3D structure of Alzheimer's amyloid-β(1–42) fibrils, Proc. Nat. Acad. of Sci. 102, 17342-17347.
16.Tjernberg, L. O., Nāslund, J., Lindqvist, F., Johansson, J., Karlstromi, A. R., Thyberg, J., Terenius, L., and Nordstedt, C. (1996) Arrest of β-Amyloid Fibril Formation by a Pentapeptide Ligand. J. Biol. Chem. 271, 8545-8548.
17.Wood, S. J., Wetzel, R., Martin, J. D., and Hurle, M. R. (1995) Prolines and Aamyloidogenicity in Fragments of the Alzheimer's Peptide β/A4, Biochemistry 34, 724-730.
18.Camus, M.-S., Santos, S. D., Chandravarkar, A., Mandal, B., Schmid, A. W., Tuchscherer, G., Mutter, M., and Lashuel, H. A. (2008) Switch-Peptides: Design and Characterization of Controllable Super-Amyloid-Forming Host-Guest Peptides as Tools for Identifying Anti-Amyloid Agents, ChemBioChem 9, 2104-2112.
19.Tjernberg, L. O., Callaway, D. J., Tjernberg, A., Hahne, S., Lilliehöök, C., Terenius, L., Thyberg, J., and Nordstedt, C. (1999) A Molecular Model of Alzheimer Amyloid β-Peptide Fibril Formation. J. Biol. Chem. 274, 12619-12625.
20.Merrifield, R. B. (1986) Soild phase peptide synthesis. Science 232, 341-347.
21.張湘戎. (2003) 體抑素胜肽分子內雙硫鍵建構之研究,碩士學位論文,中原大學化學研究所.
22.Shieh Jia-Min, Lai Yi-Fan, Lin Yong-Chang, and Fang Jr-Yau. (2005) Photoluminescence: Principles, Structure,and Applications. Nano Communications (NDL) 26, 28-39.
23.Skoog, A. D., Holler, F. J., Nieman, A. T. (1998) Principle of instrumental analysis 5nd ed. 335-267. Saunders College Press, Belmont.
24.Berova, N., Nakanishi, K., and Woody, R. (2000) Circular dichroism : Principles and applications. Wiley, Hoboken.
25.陳力俊、張立、梁鉅銘、林文台、楊哲人、鄭晃忠. (2004) 材料電子顯微鏡學. 全華出版社. 台灣.
26.Bhattacharyya, A., Thakur, A. K., Chellgren, V. M., Thiagarajan, G., Williams, A. D., Chellgren, B. W., Creamer, T. P., and Wetzel, R. (2006) Oligoproline Effects on Polyglutamine Conformation and Aggregation, J. Mol. Biol. 355, 524-535.
27.DeRider, M. L., Wilkens, S. J., Waddell, M. J., Bretscher, L. E., Weinhold, F., Raines, R. T., and Markley, J. L. (2002) Collagen stability : Insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations. J. Am. Chem. Soc. 124, 2497-2505.
28.Benzi, C., Improta, R., Scalmani, G., Barone, V. (2002) Quantum mechanical study of the conformational behavior of proline and 4R-hydroxyproline dipeptide analogues in vacuum and in aqueous solution. J. Comput. Chem. 23, 341-350.
29.Wolfe, S. (1972) Gauche effect. Stereochemical consequences of adjacent electron pairs and polar bonds. Acc. Chem. Res. 5, 102-111.
30.Improta, R., Benzi, C., Barone, V., (2001) Understanding the role of stereoelectronic effect in determining collagen stability. 1. A quantum mechanical study of proline, hydroxyproline, and fluoroproline dipeptide analogues in aqueous solution. J. Am. Chem. Soc. 123, 12568-12577.
31.Chiang Yi-Chun, Lin Yu-Ju, and Horng Jia-Cherng. (2009) Stereoelectronic effects on the transition barrier of polyproline conformational interconversion. Protein Science 18, 1967-1977.
32.Castelletto, V., Hamley, I. W., Cenker, C., and Olsson, U. (2010) Influence of Salt on the Self-Assembly of Two Model Amyloid Heptapeptides, J. Phys. Chem. B 114, 8002-8008.