|
1. Folkman, J. & D'Amore, P.A. Blood vessel formation: what is its molecular basis? Cell 87, 1153-1155 (1996). 2. Patan, S. Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50, 1-15 (2000). 3. Ausprunk, D.H. & Folkman, J. Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc Res 14, 53-65 (1977). 4. Marin-Padilla, M. Early vascularization of the embryonic cerebral cortex: Golgi and electron microscopic studies. J Comp Neurol 241, 237-249 (1985). 5. Fischer, R.S., Gardel, M., Ma, X., Adelstein, R.S. & Waterman, C.M. Local cortical tension by myosin II guides 3D endothelial cell branching. Curr Biol 19, 260-265 (2009). 6. Klosovskii, B.N. & Zhukova, T.P. [Effect of colchicine on remote phases of growing capillaries in the brain.]. Arkh Patol 35(3), 38-44 (1963). 7. Gerhardt, H., et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161, 1163-1177 (2003). 8. Ruhrberg, C., et al. Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes Dev 16, 2684-2698 (2002). 9. Huber, A.B., Kolodkin, A.L., Ginty, D.D. & Cloutier, J.F. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 26, 509-563 (2003). 10. Covassin, L.D., Villefranc, J.A., Kacergis, M.C., Weinstein, B.M. & Lawson, N.D. Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc Natl Acad Sci U S A 103, 6554-6559 (2006). 11. Dameron, K.M., Volpert, O.V., Tainsky, M.A. & Bouck, N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265, 1582-1584 (1994). 12. Guo, N., Krutzsch, H.C., Inman, J.K. & Roberts, D.D. Thrombospondin 1 and type I repeat peptides of thrombospondin 1 specifically induce apoptosis of endothelial cells. Cancer Res 57, 1735-1742 (1997). 13. Hsu, S.C., et al. Inhibition of angiogenesis in human glioblastomas by chromosome 10 induction of thrombospondin-1. Cancer Res 56, 5684-5691 (1996). 14. Asch, A.S., Barnwell, J., Silverstein, R.L. & Nachman, R.L. Isolation of the thrombospondin membrane receptor. J Clin Invest 79, 1054-1061 (1987). 15. Li, W.X., Howard, R.J. & Leung, L.L. Identification of SVTCG in thrombospondin as the conformation-dependent, high affinity binding site for its receptor, CD36. J Biol Chem 268, 16179-16184 (1993). 16. Frieda, S., Pearce, A., Wu, J. & Silverstein, R.L. Recombinant GST/CD36 fusion proteins define a thrombospondin binding domain. Evidence for a single calcium-dependent binding site on CD36. J Biol Chem 270, 2981-2986 (1995). 17. Greenwalt, D.E., et al. Membrane glycoprotein CD36: a review of its roles in adherence, signal transduction, and transfusion medicine. Blood 80, 1105-1115 (1992). 18. Swerlick, R.A., Lee, K.H., Wick, T.M. & Lawley, T.J. Human dermal microvascular endothelial but not human umbilical vein endothelial cells express CD36 in vivo and in vitro. J Immunol 148, 78-83 (1992). 19. Petzelbauer, P., Bender, J.R., Wilson, J. & Pober, J.S. Heterogeneity of dermal microvascular endothelial cell antigen expression and cytokine responsiveness in situ and in cell culture. J Immunol 151, 5062-5072 (1993). 20. Giancotti, F.G. Complexity and specificity of integrin signalling. Nat Cell Biol 2, E13-14 (2000). 21. Klemke, R.L., et al. Regulation of cell motility by mitogen-activated protein kinase. J Cell Biol 137, 481-492 (1997). 22. Davis, G.E., Black, S.M. & Bayless, K.J. Capillary morphogenesis during human endothelial cell invasion of three-dimensional collagen matrices. In Vitro Cell Dev Biol Anim 36, 513-519 (2000). 23. Senger, D.R., et al. The alpha(1)beta(1) and alpha(2)beta(1) integrins provide critical support for vascular endothelial growth factor signaling, endothelial cell migration, and tumor angiogenesis. Am J Pathol 160, 195-204 (2002). 24. Lawson, N.D. & Weinstein, B.M. Arteries and veins: making a difference with zebrafish. Nat Rev Genet 3, 674-682 (2002). 25. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B. & Schilling, T.F. Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310 (1995). 26. Maruyama, Y. The human endothelial cell in tissue culture. Z Zellforsch Mikrosk Anat 60, 69-79 (1963). 27. Jaffe, E.A., Nachman, R.L., Becker, C.G. & Minick, C.R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52, 2745-2756 (1973). 28. Heisenberg, C.P., et al. Silberblick/Wnt11 mediates convergent extension movements during zebrafish gastrulation. Nature 405, 76-81 (2000). 29. Leung, T., et al. Zebrafish G protein gamma2 is required for VEGF signaling during angiogenesis. Blood 108, 160-166 (2006). 30. Wolff, J.R. & Bar, T. 'Seamless' endothelia in brain capillaries during development of the rat's cerebral cortex. Brain Res 41, 17-24 (1972). 31. Lu, X., et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 432, 179-186 (2004). 32. Torres-Vazquez, J., et al. Semaphorin-plexin signaling guides patterning of the developing vasculature. Dev Cell 7, 117-123 (2004). 33. Small, J.V., Stradal, T., Vignal, E. & Rottner, K. The lamellipodium: where motility begins. Trends Cell Biol 12, 112-120 (2002). 34. Pollard, S.M., et al. Essential and overlapping roles for laminin alpha chains in notochord and blood vessel formation. Dev Biol 289, 64-76 (2006). 35. Leslie, J.D., et al. Endothelial signalling by the Notch ligand Delta-like 4 restricts angiogenesis. Development 134, 839-844 (2007). 36. Bussmann, J., Bakkers, J. & Schulte-Merker, S. Early endocardial morphogenesis requires Scl/Tal1. PLoS Genet 3, e140 (2007). 37. Liao, W., et al. The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation. Development 124, 381-389 (1997). 38. Thompson, M.A., et al. The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. Dev Biol 197, 248-269 (1998). 39. Siekmann, A.F. & Lawson, N.D. Notch signalling limits angiogenic cell behaviour in developing zebrafish arteries. Nature 445, 781-784 (2007). 40. Nasevicius, A., Larson, J. & Ekker, S.C. Distinct requirements for zebrafish angiogenesis revealed by a VEGF-A morphant. Yeast 17, 294-301 (2000). 41. Martyn, U. & Schulte-Merker, S. Zebrafish neuropilins are differentially expressed and interact with vascular endothelial growth factor during embryonic vascular development. Dev Dyn 231, 33-42 (2004). 42. Lawson, N.D., Mugford, J.W., Diamond, B.A. & Weinstein, B.M. phospholipase C gamma-1 is required downstream of vascular endothelial growth factor during arterial development. Genes Dev 17, 1346-1351 (2003). 43. Reynolds, A.R., et al. Elevated Flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in beta3-integrin-deficient mice. Cancer Res 64, 8643-8650 (2004). 44. Lohela, M., Saaristo, A., Veikkola, T. & Alitalo, K. Lymphangiogenic growth factors, receptors and therapies. Thromb Haemost 90, 167-184 (2003). 45. Hogan, B.M., et al. Vegfc/Flt4 signalling is suppressed by Dll4 in developing zebrafish intersegmental arteries. Development 136, 4001-4009 (2009). 46. Soga, N., Connolly, J.O., Chellaiah, M., Kawamura, J. & Hruska, K.A. Rac regulates vascular endothelial growth factor stimulated motility. Cell Commun Adhes 8, 1-13 (2001). 47. Lamalice, L., Houle, F., Jourdan, G. & Huot, J. Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 23, 434-445 (2004). 48. Ispanovic, E., Serio, D. & Haas, T.L. Cdc42 and RhoA have opposing roles in regulating membrane type 1-matrix metalloproteinase localization and matrix metalloproteinase-2 activation. Am J Physiol Cell Physiol 295, C600-610 (2008). 49. Pollard, T.D. & Borisy, G.G. Cellular motility driven by assembly and disassembly of actin filaments. Cell 112, 453-465 (2003). 50. Kendall, R.L. & Thomas, K.A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci U S A 90, 10705-10709 (1993). 51. Sawano, A., Takahashi, T., Yamaguchi, S., Aonuma, M. & Shibuya, M. Flt-1 but not KDR/Flk-1 tyrosine kinase is a receptor for placenta growth factor, which is related to vascular endothelial growth factor. Cell Growth Differ 7, 213-221 (1996). 52. Strongin, A.Y., et al. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem 270, 5331-5338 (1995). 53. Bernardo, M.M. & Fridman, R. TIMP-2 (tissue inhibitor of metalloproteinase-2) regulates MMP-2 (matrix metalloproteinase-2) activity in the extracellular environment after pro-MMP-2 activation by MT1 (membrane type 1)-MMP. Biochem J 374, 739-745 (2003).
|