跳到主要內容

臺灣博碩士論文加值系統

(44.200.94.150) 您好!臺灣時間:2024/10/12 01:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林士暐
研究生(外文):Lin, Shih-Wei
論文名稱:米根黴菌葡萄糖澱粉酶之澱粉結合區與異麥芽寡糖複合物晶體結構之研究
論文名稱(外文):Crystal Structures of Starch Binding Domain of Glucoamylase from Rhizopus oryzae in Complex with Isomaltooligosaccharide
指導教授:孫玉珠
指導教授(外文):Sun, Yuh-Ju
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:63
中文關鍵詞:澱粉結合區米根黴菌
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Glucoamylase hydrolyzes starch and polysaccharides to β-D-glucose. Rhizopus oryzae glucoamylase (RoGA) consists of two functional domains, an N-terminal starch binding domain (SBD) and a C-terminal catalytic domain and these two domains are connected by an O-glycosylated linker. RoSBD belongs to carbohydrate-binding module 21 (CBM21). In previous study, two crystal structures of RoSBD complexes with linear maltoheptaose (RoSBD-G7) and β-cyclodextrin (RoSBD-βCD) with α-(1,4) glycosidic linkage have been solved in our lab. The overall structures belong to an immunoglobulin-like folding and two carbohydrate-binding sites were observed. Site I is created by several conserved aromatic residues, Trp47, Tyr83, and Tyr94, forming a broad, flat, and firm hydrophobic binding surface. Site II is built up by Tyr32 and Phe58, producing a protruded and narrow binding environment.
In this study, two crystal structures of the RoSBD complexes with α-(1,6) gluco-oligosaccharide, isomaltotriose (RoSBD-isoG3) and isomaltotetraose (RoSBD-isoG4), were determined at 1.2 and 1.3A respectively. Two unique polyN loops play an important role in distinguish difference between α-(1,4) and α-(1,6) gluco-oligosaccharide upon protein-carbohydrate interaction. Although there are two carbohydrate-binding sites available and exist in RoSBD, only one binding site, site II, was observed in the RoSBD-isoG3 complex. Site II (Tyr32) might act as the initial and recognition binding site and bind to carbohydrate first. Site I (Trp47) could not bind to carbohydrate independently; it participated and supported the binding after that Site II (Tyr32) has been bound with carbohydrate. When the carbohydrate length is longer than three glucosyl units the second binding site, site I would be activated and promoted the carbohydrate binding. Two binding sites would assist each other to reinforce the binding ability as well as stabilize the binding environment when bind to the long gluco-oligosaccharide as well as starch.

Chapter 1 Introduction 1
1.1. Starch 1
1.2. Glucoamylase 1
1.3. Carbohydrate-binding modules (CBMs) 2
1.4. Starch-binding domain (SBD) 3
1.5. Isomaltotriose (isoG3) and isomaltotetraose(isoG4) 4

Chapter 2 Materials and methods 6
2.1. Protein expression and purification 6
2.2. Analytical gel filtration chromatography 7
2.3. Crystallization 7
2.4. X-ray data collection 8
2.5. Matthew coefficient 9
2.6. Phase determination 10
2.7. Structure refinement 10

Chapter 3 Results 12
3.1. Structure-based multiple sequence alignment 12
3.2. Structures of RoSBD-isoG3 and RoSBD-isoG4 complexes 12
3.2.1. Overall structure of RoSBD-isoG3 complex 12
3.2.2. Overall structure of RoSBD-isoG4 complex 14
3.3. Comparison of structures among unliganded and liganded RoSBDs 14
3.4. Ligand binding residues in RoSBD-isoG3 complex 15
3.5. Ligand binding residues in RoSBD-isoG4 complex 18
3.6. Comparison of ligand binding residues among unliganded and
Liganded RoSBD complexes 20
3.7. Crystal packing of RoSBD complexes 21
3.8. Structure comparison of RoSBD-G7 and TvSBD-G6 complexes 22
3.9. Structural correlation between RoSBD and human antibody 2G12 23
3.10. Structural modeling of Man4 binding sites on RoSBD 24
Chapter 4 Discussion 26
Figures 29
Tables 52
Reference 60

1 Richard F. Tester, J. K., Xin Qi. (2004) Starch-composition, fine structure and architecture. Journal of Cereal Science. 39, 151-165
2 Christiansen, C., Abou Hachem, M., Janecek, S., Vikso-Nielsen, A., Blennow, A. and Svensson, B. (2009) The carbohydrate-binding module family 20--diversity, structure, and function. FEBS J. 276, 5006-5029
3 Gessler, K., Uson, I., Takaha, T., Krauss, N., Smith, S. M., Okada, S., Sheldrick, G. M. and Saenger, W. (1999) V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proc Natl Acad Sci U S A. 96, 4246-4251
4 Smith, A. M., Denyer, K. and Martin, C. R. (1995) What Controls the Amount and Structure of Starch in Storage Organs? Plant Physiol. 107, 673-677
5 Greenwood, C. T. (1956) Aspects of the physical chemistry of starch. Adv Carbohydr Chem. 48, 335-385
6 Imberty, A., Chanzy, H., Perez, S., Buleon, A. and Tran, V. (1988) The double-helical nature of the crystalline part of A-starch. J Mol Biol. 201, 365-378
7 Coutinho, P. M. and Reilly, P. J. (1997) Glucoamylase structural, functional, and evolutionary relationships. Proteins. 29, 334-347
8 Sauer, J., Sigurskjold, B. W., Christensen, U., Frandsen, T. P., Mirgorodskaya, E., Harrison, M., Roepstorff, P. and Svensson, B. (2000) Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta. 1543, 275-293
9 Bott, R., Saldajeno, M., Cuevas, W., Ward, D., Scheffers, M., Aehle, W., Karkehabadi, S., Sandgren, M. and Hansson, H. (2008) Three-dimensional structure of an intact glycoside hydrolase family 15 glucoamylase from Hypocrea jecorina. Biochemistry. 47, 5746-5754
10 Chiba, S. (1997) Molecular mechanism in alpha-glucosidase and glucoamylase. Biosci Biotechnol Biochem. 61, 1233-1239
11 Lin, S. C., Liu, W. T., Liu, S. H., Chou, W. I., Hsiung, B. K., Lin, I. P., Sheu, C. C. and Dah-Tsyr Chang, M. (2007) Role of the linker region in the expression of Rhizopus oryzae glucoamylase. BMC Biochem. 8, 9
12 Henrissat, B. (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 280 ( Pt 2), 309-316
13 Ashkari, T., Nakamura, N., Tanaka, Y., Kiuchi, N., Shibano, Y., Tanaka, T., Amachi, T. and Yoshizumi, H. (1986) Rhizopus Raw-Starch-Degrading Glucoamylase: Its Cloning and Expression in Yeast. Agric. Biol. Chem. 50, 957-964
14 Tanaka, Y., Ashikari, T., Nakamura, N., Kiuchi, N., Shibano, Y., Amachi, T. and Yoshizumi, H. (1986) Comparison of amino acid sequences of three glucoamylases and their structure-function relationships. Agric. Biol. Chem. 50, 965-969
15 Houghton-Larsen, J. and Pedersen, P. A. (2003) Cloning and characterisation of a glucoamylase gene (GlaM) from the dimorphic zygomycete Mucor circinelloides. Appl Microbiol Biotechnol. 62, 210-217
16 Southall, S. M., Simpson, P. J., Gilbert, H. J., Williamson, G. and Williamson, M. P. (1999) The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett. 447, 58-60
17 Bui, D. M., Kunze, I., Horstmann, C., Schmidt, T., Breunig, K. D. and Kunze, G. (1996) Expression of the Arxula adeninivorans glucoamylase gene in Kluyveromyces lactis. Appl Microbiol Biotechnol. 45, 102-106
18 Coutinho, P. M. and Henrissat, B. (1999) The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach. In Genetics, Biochemistry and Ecology of Cellulose Degradation. Uni Publishers Co., Tokyo, 15–23
19 Hall, J., Black, G. W., Ferreira, L. M., Millward-Sadler, S. J., Ali, B. R., Hazlewood, G. P. and Gilbert, H. J. (1995) The non-catalytic cellulose-binding domain of a novel cellulose from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Biochem. J. 309, 749–756
20 Sorimachi, K., Le Gal-Coeffet, M. F., Williamson, G., Archer, D. B. and Williamson, M. P. (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure. 5, 647-661
21 Liu, Y. N., Lai, Y. T., Chou, W. I., Chang, M. D. and Lyu, P. C. (2007) Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J. 403, 21-30
22 Tung, J. Y., Chang, M. D., Chou, W. I., Liu, Y. Y., Yeh, Y. H., Chang, F. Y., Lin, S. C., Qiu, Z. L. and Sun, Y. J. (2008) Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Biochem J. 416, 27-36
23 Boraston, A. B., Healey, M., Klassen, J., Ficko-Blean, E., Lammerts van Bueren, A. and Law, V. (2006) A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J Biol Chem. 281, 587-598
24 Abe, A., Tonozuka, T., Sakano, Y. and Kamitori, S. (2004) Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J Mol Biol. 335, 811-822
25 Mikami, B., Iwamoto, H., Malle, D., Yoon, H. J., Demirkan-Sarikaya, E., Mezaki, Y. and Katsuya, Y. (2006) Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. J Mol Biol. 359, 690-707
26 Polekhina, G., Gupta, A., van Denderen, B. J., Feil, S. C., Kemp, B. E., Stapleton, D. and Parker, M. W. (2005) Structural basis for glycogen recognition by AMP-activated protein kinase. Structure. 13, 1453-1462
27 Cheng, C., Huang, D. and Roach, P. J. (1997) Yeast PIG genes: PIG1 encodes a putative type 1 phosphatase subunit that interacts with the yeast glycogen synthase Gsy2p. Yeast. 13, 1-8
28 Tang, P. M., Bondor, J. A., Swiderek, K. M. and DePaoli-Roach, A. A. (1991) Molecular cloning and expression of the regulatory (RG1) subunit of the glycogen-associated protein phosphatase. J Biol Chem. 266, 15782-15789
29 Chou, W. I., Pai, T. W., Liu, S. H., Hsiung, B. K. and Chang, M. D. (2006) The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem J. 396, 469-477
30 Yamaguchi, S., Kamikubo, H., Shimizu, N., Yamazaki, Y., Imamoto, Y. and Kataoka, M. (2007) Preparation of large crystals of photoactive yellow protein for neutron diffraction and high resolution crystal structure analysis. Photochem Photobiol. 83, 336-338
31 Otwinowski, Z. and Minor, W. (1997) Processing of X-Ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol 276, 307-326
32 Matthews, B. W. (1968) Solvent content of protein crystals. J Mol Biol. 33, 491-497
33 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 50, 760-763
34 Murshudov, G. N., Vagin, A. A. and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 53, 240-255
35 Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Moriarty, N. W., Zwart, P. H., Hung, L. W., Read, R. J. and Adams, P. D. (2008) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr. 64, 61-69
36 Emsley, P. and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 60, 2126-2132
37 Moriarty, N. W., Grosse-Kunstleve, R. W. and Adams, P. D. (2009) electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr D Biol Crystallogr. 65, 1074-1080
38 Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283-291
39 Calarese, D. A., Lee, H. K., Huang, C. Y., Best, M. D., Astronomo, R. D., Stanfield, R. L., Katinger, H., Burton, D. R., Wong, C. H. and Wilson, I. A. (2005) Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Proc Natl Acad Sci U S A. 102, 13372-13377
40 Kabanova, A., Adamo, R., Proietti, D., Berti, F., Tontini, M., Rappuoli, R. and Costantino, P. (2010) Preparation, characterization and immunogenicity of HIV-1 related high-mannose oligosaccharides-CRM(197) glycoconjugates. Glycoconj J

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 周淑卿(2002)。敎師與學生在課程發展歷程中的處境──系統論與概念重建論的觀點。教育研究集刊,48(1),133-152。
2. 王明珂(1996)。誰的歷史:自傳、傳記與口述歷史的社會記憶本質。思與言,34(3),147-184。
3. 林美珠(2000)。敘事研究:從生命故事出發。輔導季刊,36(4),27-34。
4. 張世忠(2001)。協同教學模式之初探。教育研究資訊,9(4),66-82。
5. 張佳琳(2003)。教育改革的潛在課程分析—政治社會學觀點論述。課程與教學季刊。6 (4), 19-35。
6. 陳明印(2002)。九年一貫課程銜接的調適與因應。國民教育,43,(2),10-19。
7. 游家政(2000)。學校課程的統整及其教學。課程與教學季刊,3(1),19-38。
8. 陳昭珍(2000)。<二十一世紀電子圖書館的發展趨勢>。國家圖書館館刊89卷2期
9. 陳雪華(2001)。<台灣地區數位化典藏與資源組織相關計畫之發展>。圖書資訊學刊,16
10. 陳雪華、項潔、陳香君、郭筑盈、朱瀅潔(2003)。<台灣地區數位內容產業人力發展之研究>。大學圖書館,7(2),
11. 項潔、陳雪華、魏雅惠、高世芯(2002)。<數位典藏創意加值應用之初探>。 資訊與教育雜誌,91
12. 呂燕卿 (2008)。藝術與人文領域97課程綱要之新理念及其特色。教育研究月刊,175,35-44
13. 林小玉(2001)。由音樂藝術之本質探討多元評量於音樂教學之意涵與實踐。音樂藝術學刊,1,61-88。
14. 林朱彥(1997)。重拾「樂趣」--國小音樂新課程之精神與教學。國教之友,
15. 邱垂堂(2003)。從音樂欣賞到藝術與人文領域的統整教學。國民教育,43,6,24-29。