|
1 Richard F. Tester, J. K., Xin Qi. (2004) Starch-composition, fine structure and architecture. Journal of Cereal Science. 39, 151-165 2 Christiansen, C., Abou Hachem, M., Janecek, S., Vikso-Nielsen, A., Blennow, A. and Svensson, B. (2009) The carbohydrate-binding module family 20--diversity, structure, and function. FEBS J. 276, 5006-5029 3 Gessler, K., Uson, I., Takaha, T., Krauss, N., Smith, S. M., Okada, S., Sheldrick, G. M. and Saenger, W. (1999) V-Amylose at atomic resolution: X-ray structure of a cycloamylose with 26 glucose residues (cyclomaltohexaicosaose). Proc Natl Acad Sci U S A. 96, 4246-4251 4 Smith, A. M., Denyer, K. and Martin, C. R. (1995) What Controls the Amount and Structure of Starch in Storage Organs? Plant Physiol. 107, 673-677 5 Greenwood, C. T. (1956) Aspects of the physical chemistry of starch. Adv Carbohydr Chem. 48, 335-385 6 Imberty, A., Chanzy, H., Perez, S., Buleon, A. and Tran, V. (1988) The double-helical nature of the crystalline part of A-starch. J Mol Biol. 201, 365-378 7 Coutinho, P. M. and Reilly, P. J. (1997) Glucoamylase structural, functional, and evolutionary relationships. Proteins. 29, 334-347 8 Sauer, J., Sigurskjold, B. W., Christensen, U., Frandsen, T. P., Mirgorodskaya, E., Harrison, M., Roepstorff, P. and Svensson, B. (2000) Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta. 1543, 275-293 9 Bott, R., Saldajeno, M., Cuevas, W., Ward, D., Scheffers, M., Aehle, W., Karkehabadi, S., Sandgren, M. and Hansson, H. (2008) Three-dimensional structure of an intact glycoside hydrolase family 15 glucoamylase from Hypocrea jecorina. Biochemistry. 47, 5746-5754 10 Chiba, S. (1997) Molecular mechanism in alpha-glucosidase and glucoamylase. Biosci Biotechnol Biochem. 61, 1233-1239 11 Lin, S. C., Liu, W. T., Liu, S. H., Chou, W. I., Hsiung, B. K., Lin, I. P., Sheu, C. C. and Dah-Tsyr Chang, M. (2007) Role of the linker region in the expression of Rhizopus oryzae glucoamylase. BMC Biochem. 8, 9 12 Henrissat, B. (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J. 280 ( Pt 2), 309-316 13 Ashkari, T., Nakamura, N., Tanaka, Y., Kiuchi, N., Shibano, Y., Tanaka, T., Amachi, T. and Yoshizumi, H. (1986) Rhizopus Raw-Starch-Degrading Glucoamylase: Its Cloning and Expression in Yeast. Agric. Biol. Chem. 50, 957-964 14 Tanaka, Y., Ashikari, T., Nakamura, N., Kiuchi, N., Shibano, Y., Amachi, T. and Yoshizumi, H. (1986) Comparison of amino acid sequences of three glucoamylases and their structure-function relationships. Agric. Biol. Chem. 50, 965-969 15 Houghton-Larsen, J. and Pedersen, P. A. (2003) Cloning and characterisation of a glucoamylase gene (GlaM) from the dimorphic zygomycete Mucor circinelloides. Appl Microbiol Biotechnol. 62, 210-217 16 Southall, S. M., Simpson, P. J., Gilbert, H. J., Williamson, G. and Williamson, M. P. (1999) The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett. 447, 58-60 17 Bui, D. M., Kunze, I., Horstmann, C., Schmidt, T., Breunig, K. D. and Kunze, G. (1996) Expression of the Arxula adeninivorans glucoamylase gene in Kluyveromyces lactis. Appl Microbiol Biotechnol. 45, 102-106 18 Coutinho, P. M. and Henrissat, B. (1999) The modular structure of cellulases and other carbohydrate-active enzymes: an integrated database approach. In Genetics, Biochemistry and Ecology of Cellulose Degradation. Uni Publishers Co., Tokyo, 15–23 19 Hall, J., Black, G. W., Ferreira, L. M., Millward-Sadler, S. J., Ali, B. R., Hazlewood, G. P. and Gilbert, H. J. (1995) The non-catalytic cellulose-binding domain of a novel cellulose from Pseudomonas fluorescens subsp. cellulosa is important for the efficient hydrolysis of Avicel. Biochem. J. 309, 749–756 20 Sorimachi, K., Le Gal-Coeffet, M. F., Williamson, G., Archer, D. B. and Williamson, M. P. (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to beta-cyclodextrin. Structure. 5, 647-661 21 Liu, Y. N., Lai, Y. T., Chou, W. I., Chang, M. D. and Lyu, P. C. (2007) Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J. 403, 21-30 22 Tung, J. Y., Chang, M. D., Chou, W. I., Liu, Y. Y., Yeh, Y. H., Chang, F. Y., Lin, S. C., Qiu, Z. L. and Sun, Y. J. (2008) Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. Biochem J. 416, 27-36 23 Boraston, A. B., Healey, M., Klassen, J., Ficko-Blean, E., Lammerts van Bueren, A. and Law, V. (2006) A structural and functional analysis of alpha-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J Biol Chem. 281, 587-598 24 Abe, A., Tonozuka, T., Sakano, Y. and Kamitori, S. (2004) Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. J Mol Biol. 335, 811-822 25 Mikami, B., Iwamoto, H., Malle, D., Yoon, H. J., Demirkan-Sarikaya, E., Mezaki, Y. and Katsuya, Y. (2006) Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site. J Mol Biol. 359, 690-707 26 Polekhina, G., Gupta, A., van Denderen, B. J., Feil, S. C., Kemp, B. E., Stapleton, D. and Parker, M. W. (2005) Structural basis for glycogen recognition by AMP-activated protein kinase. Structure. 13, 1453-1462 27 Cheng, C., Huang, D. and Roach, P. J. (1997) Yeast PIG genes: PIG1 encodes a putative type 1 phosphatase subunit that interacts with the yeast glycogen synthase Gsy2p. Yeast. 13, 1-8 28 Tang, P. M., Bondor, J. A., Swiderek, K. M. and DePaoli-Roach, A. A. (1991) Molecular cloning and expression of the regulatory (RG1) subunit of the glycogen-associated protein phosphatase. J Biol Chem. 266, 15782-15789 29 Chou, W. I., Pai, T. W., Liu, S. H., Hsiung, B. K. and Chang, M. D. (2006) The family 21 carbohydrate-binding module of glucoamylase from Rhizopus oryzae consists of two sites playing distinct roles in ligand binding. Biochem J. 396, 469-477 30 Yamaguchi, S., Kamikubo, H., Shimizu, N., Yamazaki, Y., Imamoto, Y. and Kataoka, M. (2007) Preparation of large crystals of photoactive yellow protein for neutron diffraction and high resolution crystal structure analysis. Photochem Photobiol. 83, 336-338 31 Otwinowski, Z. and Minor, W. (1997) Processing of X-Ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol 276, 307-326 32 Matthews, B. W. (1968) Solvent content of protein crystals. J Mol Biol. 33, 491-497 33 (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr D Biol Crystallogr. 50, 760-763 34 Murshudov, G. N., Vagin, A. A. and Dodson, E. J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr. 53, 240-255 35 Terwilliger, T. C., Grosse-Kunstleve, R. W., Afonine, P. V., Moriarty, N. W., Zwart, P. H., Hung, L. W., Read, R. J. and Adams, P. D. (2008) Iterative model building, structure refinement and density modification with the PHENIX AutoBuild wizard. Acta Crystallogr D Biol Crystallogr. 64, 61-69 36 Emsley, P. and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 60, 2126-2132 37 Moriarty, N. W., Grosse-Kunstleve, R. W. and Adams, P. D. (2009) electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr D Biol Crystallogr. 65, 1074-1080 38 Laskowski, R. A., MacArthur, M. W., Moss, D. S. and Thornton, J. M. (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283-291 39 Calarese, D. A., Lee, H. K., Huang, C. Y., Best, M. D., Astronomo, R. D., Stanfield, R. L., Katinger, H., Burton, D. R., Wong, C. H. and Wilson, I. A. (2005) Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Proc Natl Acad Sci U S A. 102, 13372-13377 40 Kabanova, A., Adamo, R., Proietti, D., Berti, F., Tontini, M., Rappuoli, R. and Costantino, P. (2010) Preparation, characterization and immunogenicity of HIV-1 related high-mannose oligosaccharides-CRM(197) glycoconjugates. Glycoconj J
|