(3.238.235.155) 您好!臺灣時間:2021/05/16 17:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:李威縉
研究生(外文):Lee, Wei-Chin
論文名稱:分子束磊晶成長高品質氧化物薄膜在超越16nm技術點互補式金氧半電晶體的研究
論文名稱(外文):MBE-grown High quality Oxide Thin Film for CMOS Technology beyond 16nm node
指導教授:洪銘輝郭瑞年
指導教授(外文):Hong, MinghweiKwo, Raynien
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:112
中文關鍵詞:高介電常數閘及氧化物砷化鎵氮化鎵氧化鉿
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
展望未來半導體產業 ,當元件尺碼持續微縮至16 nm以下,目前產學界的共識皆為,我們不但需要導入高介電常數的閘極氧化物並且需高載子遷移率的通道材料取代使用已久的SiO2/Si系統。此外,高介電常數介電材料及三五化合物半導體必須要能夠被整合在Si上。
本論文的研究主題在於利用獨特之分子束磊晶方法所成長高品質高介電氧化物薄膜來解決此問題。藉由分子束磊晶的成長方式達成了兩項主要的成果:(I)利用(a)介面工程和(b)相變化工程進一步降低等效氧化層厚度,(II)利用分子束磊晶成長高品質氧化物晶體達成將氮化鎵與矽整合的目的。
(I) (a) 藉由分子束磊晶法有效抑制氧化物與Si間介面層之形成。典型的4.9 nm厚的氧化鉿薄膜具有20.7的高介電常數、0.9 nm的等效氧化層厚度以及在1V的時候有約0.4 A/cm2的低漏電流密度。而由1.4 nm厚的原子層沉積成長的氧化鉿和1.5 nm厚的分子束磊晶成長的氧化鉿所組成的薄膜則具有16.2的介電常數、0.7 nm的等效氧化層厚度以及在平帶電壓減1伏特處有5.3×10-1 A/cm2的漏電流密度。由電導法(conductance method)得到的在能隙中間處之缺陷密度為3.6×1011 cm-2eV-1。

(b) 以分子束磊晶成長立方體相的釔摻雜氧化鉿薄膜在(111)的矽以及(100)的砷化鎵基板上。利用X光散射及穿透式電子顯微鏡所進行的詳細的結構及形態分析顯示釔摻雜氧化鉿薄膜是以磊晶形式成長在(111)的矽以及(100)的砷化鎵基板上。而從電性的量測中發現將釔摻雜濃度最佳化可提升氧化鉿薄膜之介電常數至32並在矽及砷化鎵基板上都能達到更低的等效氧化層厚度。
(II) 利用電漿輔助分子束磊晶方式以及一層結晶氧化物薄膜(氧化鈧或��-氧化鋁)做為緩衝層可以成功以磊晶形式成長氮化鎵於矽基板上。反射式高能量電子繞射(RHEED)、高解析穿透式電子顯微鏡以及高解析X光散射技術被用來研究磊晶成長之氮化鎵的結構性質以及其臨場磊晶成長過程。在光學顯微鏡下看不到氮化鎵有任何破裂,證明結晶氧化物薄膜是一個非常有效的緩衝層。
Looking beyond the 16 nm node ICs, researchers have come up a consensus that high-κ dielectrics will become the channel material in the long-standing SiO2/Si system. The combination of high-κ dielectrics with channel made of III-Vs will have to be integrated onto Si.
Themes of this thesis work focus on utilizing unique MBE technique to grow high quality oxides to search potential solutions to solve this issue. Two major achievements has been obtained by employing the MBE method: (I) further reducing the EOT by (a) interfacial engineering and (b) phase transition engineering, (II) the integration of GaN onto Si through the high quality MBE-grown crystalline oxide.
(III) (a) By employing the MBE technique, the formation of the oxide/Si interfacial layer has been effectively suppressed. HfO2 films with 4.9 nm thickness show low leakage current density ~0.4 A/cm2 at 1V, a dielectric constant �� of 20.7, and an EOT of 0.9 nm. The composite film of ALD-HfO2(1.4 nm)/MBE-HfO2(1.5 nm) exhibits an overall�n�� value of 16.2, and an EOT of 0.7 nm with a leakage current density of 5.3×10-1 A/cm2 at Vfb -1V. The Dit value at midgap is 3.6×1011 cm-2eV-1 calculated by the conductance method.
(b) Cubic phase yttrium-doped HfO2 (YDH) ultrathin films were grown on both Si (111) and GaAs(100) substrates by molecular beam epitaxy. Thorough structural and morphological investigations by x-ray scattering and transmission electron microscopy reveal that the YDH thin films are epitaxially grown on the Si(111) and GaAs(100) substrates. From the electrical measurements, optimized doping concentration of yttrium into HfO2 increases the dielectric value to 32, achieving lower EOT on both Si and GaAs.
(IV) The epitaxial growth of GaN on Si (111) substrates with a thin crystalline oxide (Sc2O3, or ��-Al2O3) as a template/buffer layer is fabricated. The structural properties and in-situ epitaxial growth were studied using reflection high energy electron diffraction (RHEED), high-resolution transmission electron microscopy, and high-resolution x-ray diffraction. The crystalline oxide template serves as an effective barrier layer, and no cracking is observed in GaN.
Chinese Abstract I
English Abstract II
Acknowledgement III
Table of Contents IV
Table Captions V
Figure Captions VI
Chapter 1 Introduction 1
1.1 Background 1
1.2 Novel approaches to achieve further scaling in CMOS technology 5
1.3 GaN on Si with nm-thick high quality crystalline oxide as a template using molecular beam epitaxy 8
1.4 Organization of the thesis 9
Chapter 2 Instrumentation and Theories 10
2.1 Multi-Chamber Ultra-High Vacuum Molecular Beam Epitaxy System 10
2.2 Atomic layer deposition( ALD) 13
2.3 Reflection high-energy electron diffraction(RHEED) 16
2.4 Medium Energy Ion Scattering(MEIS) 17
2.5 X-ray Photoelectron Spectroscopy(XPS) 20
2.6 Low angle x-ray reflectivity (XRR) 22
2.7 X-ray diffraction(XRD) and structure analysis 25
2.8 High-Resolution Transmission Electron Microscope (HR-TEM) 32
2.9 Electrical characteristics measurement 34
Chapter 3 Results and discussion : Interfacial Engineering- A novel approach using a MBE template for subsequent ALD High k dielectrics 37
3.1 Introduction 37
3.2 MBE grown HfO2 38
3.2.1 Depostion Procedue 38
3.2.2 In-situ RHEED Analysis 39
3.2.3 Low angle x-ray reflectivity measurement 40
3.2.4 Medium Energy Ion Scattering (MEIS) Experiment 40
3.2.5 HR-TEM study 44
3.2.6 Electrical properties 46
3.3 MBE+ALD grown HfO2 49
3.3.1 Depostion Procedue 49
3.3.2 AR-XPS 50
3.3.3 HR-TEM study 51
3.3.4 Electrical properties 52
3.4 MOSFET fabrication with MBE and MBE+ALD deposited high k HfO2 dielectrics 56
Chapter 4 Results and discussion : Phase transition Engineering- Cubic phase HfO2 of enhenced dielectric constant 62
4.1 Introduction 62
4.2 YDH on GaAs(100) 64
4.2.1 Depostion Procedue 64
4.2.2 X-ray diffraction 65
4.2.3 HR-TEM study 67
4.2.4 AR-XPS study 68
4.2.5 Electrical properties 69
4.3 YDH on Si(111) 70
4.3.1 Depostion Procedue 70
4.3.2 X-ray diffraction and HR-TEM 71
4.3.3 AXD measurement 75
4.3.4 Electrical properties 78
Chapter 5 Results and discussion : High quality Crystalline Oxide-GaN on Si with nm-thick crystal g-Al2O3 and Sc2O3 using MBE 81
5.1 Introduction 81
5.2 GaN/AlN/nano thick g-Al2O3/Si (111) 83
5.2.1 Depostion Procedue 83
5.2.2 In-situ RHEED Analysis 84
5.2.3 X-ray diffraction 85
5.2.4 HR-TEM study 87
5.3 GaN/AlN/Sc2O3/Si (111) 90
5.3.1 Depostion Procedue 90
5.3.2 In-situ RHEED Analysis 91
5.3.3 In-situ RHEED scan profile 92
5.3.4 X-ray diffraction 93
5.3.5 HR-TEM study 96
Chapter 6 Conclusion 98
References 101
Appendix 107
[1] G. E. Moore, Electronics 38, 114 (1965)
[2] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, and G. Timp, Nature
(London) 399, 758 (1999)
[3] J. B. Neaton, D. A. Muller, and N. W. Ashcroft, Phys. Rew. Lett. 85, 1298 (2000)
[4] K. Mistry et al., IEDM Technical Digest, (2007)
[5] Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
[6] For review, see G. D. Wilk et al, J. Appl. Phys. 89, 5243, (2001).
[7] Materials Research Bulletin, March 2002 issue, on “Alternative Gate Dielectrics for Microelectronics”, Ed. by R. M. Wallace and G. D. Wilk.
[8] L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi and J. C. Lee, 2000 IEEE Trans. Electron Devices, 181
[9] International Technology Roadmap for Semiconductors 2007 edition: Emerging
Research Devices
[10] P. Bai et al., IEDM Tech. Dig., pp. 657-660, (2004)
[11] International Technology Roadmap for Semiconductors, Semicconductor Industry Association (2001)
[12] W. C. Lee, Y. J. Lee, Y. D. Wu, P. Chang, Y. L. Huang, Y. L. Hsu, J. P.Mannaerts, R. L. Lo, F. R. Chen, S. Maikap, L. S. Lee, W. Y. Hsieh, M. J.Tsai, S. Y. Lin, T. Gustfsson, M. Hong, and J. Kwo, J. Cryst. Growth 1298,619 (2005)
[13] X. Zhao and D. Vanderbilt, Phys. Rev. B 65, 233106 (2002)
[14] J.Y. Dai, P. F. Lee, K. H. Wong, W. Chan, and C. L. Choy, J. Appl. Phys.94, 912 (2003).
[15] K. Kita, K. Kyuno, and A. Toriumi, Appl. Phys. Lett. 86, 102906 (2005)
[16] M. Komatsu, R. Yasuhara, H. Takahashi, S. Toyoda, H. Kumigashira, M. Oshima, D. Kukuruznyak, and T. Chikyow, Appl. Phys. Lett. 89, 172107 (2006)
[17] E. Rauwel, C. Dubourdieu, B. Holländer, N. Rochat, M. D. Rossell, G. Van Tendeloo, and B. Pelissier, Appl. Phys. Lett. 89, 012902 (2006)
[18] Z. K. Yang, Y. J. Lee, W. C. Lee, P. Chang, M. L. Huang, M. Hong, C.-H. Hsu, and J. Kwo, Appl. Phys. Lett. 90, 152908 (2007)
[19] Y. C. Chang, W. H. Chang, H. C. Chiu, L. T. Tung, C. H. Lee, K. H. Shiu, M. Hong, J. Kwo, J. M. Hong, C. C. Tsai, Appl. Phys. Lett. 93 (2008) 053504
[20] Y. C. Chang, H. C. Chiu, Y. J. Lee, M. L. Huang, K. Y. Lee, and M. Hong, Y. N. Chiu, J. Kwo, Y. H. Wang, Appl. Phys. Lett. 90 (2007) 232904
[21] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, C. R. Abernathy, Appl. Phys. Lett. 73 (2007) 3893
[22] S.Y. Wu, M. Hong, A.R. Kortan, J. Kwo, J.P. Mannaerts, W.C. Lee, and Y.L. Huang, Appl. Phys. Lett. 87 (2005) 091908
[23] M. Hong, A.R. Kortan, P. Chang, Y.L. Huang, C.P. Chen, H.Y. Chou, H.Y. Lee, J.R. Kwo, M.W. Chu, C.H. Chen, L.V. Goncharova, E. Garfunkel, and T. Gustafsson, Appl. Phys. Lett. 87 (2005) 251902
[24] C.P. Chen, M. Hong, J. Kwo, H.M. Cheng, Y.L. Huang, S.Y. Lin, J. Chi, H.Y. Lee, Y.F. Hsieh, and J.P. Mannaerts, Journal of Crystal Growth 278 (2005) 638.
[25] Alfred Cho, Molecular beam epitaxy, AIP Press, New York.
[26] Marian A. Herman, Helmut Sitter, Molecular beam epitaxy :fundamentals and current status, Springer-Verlag, New York (1989)
[27] M.B. Panish, H. Temkin, Gas source molecular beam epitaxy: growth and properties of phosphorus containing III-V heterostructures, Springer-Verlag, New York (1993)
[28] Atomic Layer Epitaxy, edited by T. Suntola and M. Simpson, Blackie and Son,
London (1990)
[29] S. M. George, A. W. Ott, and J. W. Klaus, “Surface Chemistry for Atomic Layer
Growth”, J. Phys. Chem. 100, 13121 (1996)
[30] Rikka L. Puurunen, “Surface chemistry of atomic layer deposition: A case study
for the trimethylaluminum/water process”, J. Appl. Phys. 97, 121301 (2005)
[31] M. Ritala and M. Leskelä, in Handbook of Thin Film Materials, edited by H. S.
Nalwa (Academic, San Diego, 2002), Vol. 1, pp. 103-159.
[32] K. Mistry et al.,“A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning,and 100% Pb-free Packaging”, Tech. Dig. – Int. Electron Devices Meet. 2007, pp.247-250; see also at http://www.intel.com/technology/45nm/index.htm#
[33] W. Braun, "Applied RHEED," Springer-Verlag (1999).
[34] K. Britze and G. Meyer-Ehmsen, Surf. Sci. 77, 131 (1978).
[35] X. Zeng, B. Lin, I. El-Kholy, and H. Elsayed-Ali, Phys. Rev. B 59, 14907 (1999).
[36] THE TECHNOLOGY AND PHYSICS OF MOLECULAR BEAM EPITAXY,
Chapter 2, E. H. C. Parker
[37] A. Y. Cho, J. Appl. Phys. 41, 2780 (1970)
[38] G. Laurence, F. Simondet, and P. Saget, Appl. Phys. 19, 63 (1979)
[39] J. H. Neave an dB. A. Joyce, J. Cryst. Growth 43, 204 (1987)
[40] A. Y. Cho and I. Hayashi, Solid State Electron. 14, 125 (1971)
[41] L. L. Chang, Proc. 2nd Int. Symp. Molecular Beam Epitaxy and Rleated Clean
Surface Techniques, Tokyo (1982), p. 57.
[42] C. A. Chang, R. Ludeke, L. L. Chang, and L. Esaki, Appl. Phys. Lett. 31, 759
(1977)
[43] R. M. Tromp & J. F. van der Veen, Surf. Sci., 1983, 133, p. 159
[44] J. F. van der Veen, Surf. Sci. Rep., 1985, 5, p. 199
[45 John F. Watts, John Wolstenholme, An introduction to surface analysis by XPS and AES, Wiley, New York (2003)
[46] Simon Garrett, Introduction to Surface Analysis CEM924 (2001)
[47] L.G. Parratt, Phys. Rev., vol.95,359 1954)
[48] 鮑忠興, 劉思謙, “近代穿透式電子顯微鏡實務”, 滄海書局 (2008)
[49] David B. Williams and C. Barry Carter, Transmission electron microscopy: a textbook for materials science, Plenum Press, New York (1996)
[50] B. Fultz, J. M. Howe, Transmission electron microscopy and diffractometry of materials, Second Edition, New York (2002)
[51] H. B. Park, M. Cho, J. Park, S. W. Lee, and C. S. Hwang, J. Appl. Phys. 94, 3641 (2003).
[52] K. Y. Lee, W. C. Lee, Y. J. Lee, M. L. Huang, C. H. Chang, T. B. Wu, M. Hong, and J. Kwo, Applied Physics Letters, 89, 222906 (2006).
[53] K. Y. Lee, W. C. Lee, M.L. Huang,, C. H. Chang, Y. J. Lee, Y. K. Chiu, T. B. Wu, M. Hong and J. Kwo, Journal of Crystal Growth, 301-302, 378 (2007)
[54] B. W. Busch, J. Kwo, M. Hong, J. P. Mannaerts, B. J. Sapjeta, W. H. Schulte, E. Garfunkel, and T. Gustafsson, Appl. Phys. Lett. 79, 2447 (2001).
[55] W. J. Lee, Y. J. Lee, Y. D. Wu, P. Chang, Y. L. Hsu, C. P. Chen, J. P. Mannaerts , S. Maikap, C. W. Liu, L. S. Lee, W. Y. Hsieh, M. J. Tsai, S. Y. Lin, R.L. Lo, M. Hong, and J. Kwo in 2004 Taiwan MBE conference proceeding, April 29-30, Kaoschiung, Taiwan..
[56] H. T. Lue, C. Y. Liu, and C. Y. Tseng, IEEE Electronic Device Letters, 23, 553, (2002)
[57] J. Hauser, CVC © 1996 NCSU software, Department Elect. Comput. Eng., North Carolina State University, Raleigh, NC
[58] Y. Taur, Spectrum, IEEE 36, Issue 7, 25, (1999).
[59] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, IEEE Electron Device Lett. 25, 408 (2004)
[60] D. W. Stacy and D. R. Wilder, J. Am. Ceram. Soc. 58, 285 (1975)
[61] J. Wang, H. P. Li, and R. Stevens, J. Mater. Sci. 27, 5397 (1992)
[62] C.-H. Hsu, P. Chang, W. C. Lee, Z. K. Yang, Y. J. Lee, M. Hong, J. Kwo, C. M. Huang, and H. Y. Lee, Appl. Phys. Lett. 89, 122907 (2006))
[63]. Y. Dai, P. F. Lee, K. H. Wong, H. L. W. Chan, and C. L. Choy, J. Appl.Phys. 94, 912 (2003)
[64]K. Kita, K. Kyuno, and A. Toriumi, Appl. Phys. Lett. 86, 102906 (2005)
[65E. Rauwel, C. Dubourdieu, B. Hollander, N. Rochat, F. Ducroquet, M. D. Rossell, G. Van Tendeloo, and B. Pelissier, Appl. Phys. Lett. 89, 012902 (2006)
[66] C.-H. Hsu, P. Chang, W. C. Lee, Z. K. Yang, Y. J. Lee, M. Hong, J. Kwo,C. M. Huang, and H. Y. Lee, Appl. Phys. Lett. 89, 112907 (2006)
[67] H. N. Lee, D. Hesse, N. Zakharov, S. K. Lee, and U. Gösele, J. Appl. Phys. 93, 5592 (2003)
[68] C.-H. Hsu, Mau-Tsu Tang, Hsin-Yi Lee, Chih-Mon Huang, K. S. Liang, S.D. Lin, Z. C. Lin, and C. P. Lee, Physica B 357, 6 (2005)
[69] J. Y. Tewg, Y. Kuo, and J. Lu, J. Electrochem. Soc. 152, G643 (2005)
[70] S. C. Liou, M. W. Chu, C. H. Chen, Y. J. Lee, P. Chang, W. C. Lee, Z. K.Yang, M. Hong, J. Kwo, and C.-H. Hsu (unpublished)
[71] Z. K. Yang, Y. J. Lee, W. C. Lee, P. Chang, M. L. Huang, M. Hong, C.-H. Hsu, and J. Kwo, Appl. Phys. Lett. 90, 152908 (2007)
[72] K. Robinson and D. J. Tweet, Rep. Prog. Phys. 55, 599 (1992)
[73] S. Y. Wu, M. Hong, A. R. Kortan, J. Kwo, J. P. Mannaerts, W. G. Lee, and Y. L. Huang, Appl. Phys. Lett. 87, 091908 (2005)
[74] M. Hartmanová, F. Hanic, K. Putyera, D. Tunega, and V. B. Glushkova,
Mater. Chem. Phys. 34, 175 (1993)
[75] C.-H. Hsu, M.-T. Tang, H.-Y. Lee, C.-M. Huang, K. S. Liang, S. D. Lin, Z. C. Lin, and C. P. Lee, Physica B 357, 6 (2005)
[76] R. de L. Kronig, J. Opt. Soc. Am. 12, 547 (1926)
[77] S. Raghavan, X. Weng, E. Dickey, J. M. Redwing, Appl. Phys. Lett. 87 (2005) 142101
[78] B. H. Bairamov, O. Gürdal, A. Botchkarev, H. Morkoç, G. Irmer, J. Monecke, Phys. Rev. B 60 (1999) 24.
[79] D. Wang, Y. Hiroyama, M. Tamura, M. Ichikawa, and S. Yoshida, Appl. Phys. Lett. 77 (2000) 1846
[80] R. Armitage, Q. Yang, H. Feick, J. Gebauer, E. R. Weber, S. Shinkai, K. Sasaki, Appl. Phys. Lett. 81 (2002) 1450.
[81] M. Hong, J. Kwo, S.N.G. Chu, J.P. Mannaerts, A.R. Kortan, H.M. Ng, A.Y. Cho, K.A. Anselm, C.M. Lee, J.I. Chyi, J. Vac. Sci. Technol. B 20(3) (2002) 1274.
[82] Y.J. Lee, W.C. Lee, C.W. Nieh, Z.K. Yang, A.R. Kortan, M. Hong, J. Kwo, and C.-H. Hsu, J. Vac. Sci. Technol. B 26(3) (2008) 1124
[83] T. D. Lin, M. C. Hang, C. H. Hsu, J. Kwo, and M. Hong, J. Crystal Growth 301-302 (2007) 386.
[84] H. M. Ng, T. D. Moustakas, and S. N. G. Chu, Appl. Phys. Lett. 76, 2818 (2000)
[85] E. Calleja, M. A. Sánchez-Garcίa, D. Basak, F. J. Sánchez, F. Calle, P. Youinou, E. Muñoz, J. J. Serrano, J. M. Blanco, C. Villar, T. Laine, J. Oila, K. Saarinen, Hautojärvi, C. H. Molloy, D. J. Somerford, and I. Harrison, Phys. Rev. B 58, 1550 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊