|
Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Science 2000, 287, 637. (2) Hwang, G. L.; Hwang, K. C. Nano Lett. 2001, 1, 435. (3) Bekyarova, E.; Itkis, M. E.; Cabrera, N.; Zhao, B.; Yu, A.; Gao, J.; Haddon, R. C. J. Am. Chem. Soc. 2005, 127, 5990. (4) Hecht, D.; Hu, L.; Gruner, G. Appl. Phys. Lett. 2006, 89, 133112. (5) Yakobson, B. I.; Campbell, M. P.; Brabec, C. J.; Bernholc, J. Comput. Mater. Sci. 1997, 8, 341. (6) Yang, Y.; Gupta, M. C.; Dudley, K. L.; Lawrence, R. W. Nano Lett. 2001, 5, 2131. (7) Hill, D. E.; Lin, Y.; Rao, A. M.; Allard, L. F.; Sun, Y. P. Macromol. 2002, 35, 9466. (8) Liu, C. H.; Fan, S. S. Appl. Phys. Lett. 2005, 86, 123106–1. (9) Qian, D.; Dickey, E. C. Appl. Phys. Lett. 2000, 76, 2868. (10) Blond, D; Barron, V.; Ruether, M.; Ryan, K. P.; Nicolosi, V.; Blau, W. J.; Coleman, J. N. AdV. Funct. Mater 2006, 16, 1608. (11) Hwang, G. L.; Shieh, Y. T.; Hwang, K. C AdV. Funct. Mater. 2004, 14, 487. (12) Coleman, J. N.; Cadek, M.; Blake, R.; Nicolosi, V.; Ryan, K. P.; Belton, C.; Fonseca, A.; Nagy, J. B.; Gun’ko, Y. K.; Blau, W. J. AdV. Funct. Mater. 2004, 14, 791. (13) Singh, S.; Pei, Y.; Miller, R.; Sundararajan, P, R. AdV. Funct. Mater 2003, 13, 868. (14) Zhu, J.; Kim, J.; Peng, H.; Margrave, J. L.; Khabashesku, V. N.; Barrera, E. V. Nano Lett. 2003, 3, 1107. (15) Li, X.; Gao, H.; Scrivens, W. A.; Fei, D.; Xu, Xiaoyou; Sutton, M. A.; Reynolds, A. P.; Myrick, M. L. Nanotech 2004, 15, 1416. (16) Qian, D.; Dickey, E. C. J. Micro. 2001, 204, 39. (17) Watts, P. C. P.; Hsu, W. K. Nanotech 2003, 14, L7. (18) Liu, T. X.; Phang, I. Y.; Shen, L.; Chow, S. Y.; Zhang, W. D. Macromolecules 2004, 37, 7214. (19) Zhang, W. D.; Shen, L.; Phang, I. Y.; Liu, T. X. Macromolecules 2004, 37, 256. (20) Manchado, M. A.; Valetini, L.; Biagiotti, J.; Kenny, J. M. Carbon 2005, 43, 1499. (21) Meincke, O.; Kaempfer, D.; Weickmann, H.; Friedrich, C.; Vathauer, M.; Warth, H. Polymer 2004, 45, 739. (22) Kramer, E. J. AdV. Polym. Sci. 1983, 52/53, 1. (23) Donald, A. M.; Kramer, E. J J. Polym. Sci.: Polym. Phys. 1982, 20, 899. (24) Donald, A. M.; Kramer, E. J J. Polym. Sci.: Polym. Phys. 1982, 23, 1183. (25) Donald, A. M.; Kramer, E. J. Polymer 1982, 23, 461. (26) Donald, A. M.; Kramer, E. J. Polymer 1982, 23, 457. (27) Henkee, C. S.; Kramer, E. J. J. Polym. Sci.: Polym. Phys. 1985, 22, 721. (28) Yang, A. C.-M.; Kramer, E. J. J. Polym. Sci.: Polym.Phys 1985, 23, 1353. (29) Yang, A. C.-M.; Kramer, E. J. J. Mater. Sci. 1986, 21, 3601. (30) Yang, A. C. M.; Kramer, E. J.; Kuo, C. C.; Phoenix, S. L. Macromolecules 1986, 19, 2010. (31) Yang, A. C. M.; Kramer, E. J.; Kuo, C. C.; Phoenix, S. L. Macromolecules 1986, 19, 2020. (32) Kramer, E. J.; Berger, L. L. AdV. Polym. Sci. 1990, 91/92, 1. (33) Yang, A. C. M.; Kunz, M. S.; Logan, J. A. Macromolecules 1993, 26, 1776. (34) Lin, J. H.; Yang, A. C. M. Macromolecules 2001, 34, 3698. (35) Lin, C. H.; Yang, A. C. M. Macromolecules 2001, 34, 4865. (36) Yang, A. C. M; Wang, R. C.; Lin, J. H. Polymer 1996, 37, 5751. (37) Yang, A. C.-M.; Wang, R. C.; Kunz, M. S.; Yang, I. C. J. Polym. Sci.: Polym. Phys. Ed. 1996, 34, 1141. (38) Hsiao, C. C.; Lin, T. S.; Cheng, L. Y.; Ma, C. C. M.; Yang, A. C. M. Macromolecules 2005, 38, 4811. (39) Lin, T. S.; Cheng, L. Y.; Hsiao, C. C.; Yang, A. C. M. Mater. Chem. Phys. 2005, 94, 438. (40) Kong, H.; Gao, C.; Yan, D. Macromolecules 2004, 37, 4022. (41) Bridgman, D. W. Studies in Large Plastic Flow and Fracture; Harvard University Press: Cambridge, U.K., 1964: p 9. (42) Hutchinson, J. W.; Neale, K. W. J. Mech. Phys. Solids 1983, 31, 405. (43) G’sell, C.; Marquez-Lucero, A. Polymer 1993, 34, 2740. (44) Rubinstein, M.; Colby, R. H. Polymer Physics,Oxford University Press, Oxford, 2003; Chapter 9. (45) The area of the confining tube (Achain) for a single PS chain was calculated by Achain ) M0/(NAvρb) where M0 is the molar mass of a Kuhn monomer, NAv is Avogadro’s number, ρ is the density, and b is the Kuhn length. (46) A polymer segment in the wormlike tube has to move a contour length of l = bN to produce a translational distance of R = bN1/2. Therefore, the sliding velocity within the tube is N1/2 times the linear velocity measured from deformation zone widening. (47) Cotiuga, I.; Picchioni, F.; Agarwal, U. S.; Wouters, D.; Loos, J.; Lemstra, P. Macromol. Rapid Commun. 2006, 27, 1073. (48) Doi, M.; Edward, S. F. The Theory of Polymer Dynamics; Clarendon: Oxford, U.K., 1986; p 338. (49) Yang, A. C.-M. Micro-mechanisms of deformation, conduction percolation and nanotube crosslinking via surface grafting polymerization in CNT-polymer nanocomposites. The 4th US Air Force-Taiwan Nanoscience Initiative Workshop, University of Houston, Houston, TX, Feburary 8-9, 2007. (50) Lee, J. Y.; Zhang, Q.; Emrick, T.; Crosby, A. J. Macromolecules 2006, 39, 7392.
|