|
1. Priya S, Inman DJ. Energy harvesting technologies. New York ; London: Springer; 2009. xx, 517 p. p. 2. Wang ZL, Song JH. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006;312(5771):242-246. 3. Wang XD, Song JH, Liu J, Wang ZL. Direct-current nanogenerator driven by ultrasonic waves. Science 2007;316(5821):102-105. 4. Qin Y, Wang XD, Wang ZL. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008;451(7180):809-813. 5. Yang RS, Qin Y, Dai LM, Wang ZL. Power generation with laterally packaged piezoelectric fine wires. Nature Nanotechnology 2009;4(1):34-39. 6. Xu S, Qin Y, Xu C, Wei Y, Yang R, Wang ZL. Self-powered nanowire devices. Nature Nanotechnology 2010;advance online publication. 7. Qi Y, Jafferis NT, Lyons K, Lee CM, Ahmad H, McAlpine MC. Piezoelectric Ribbons Printed onto Rubber for Flexible Energy Conversion. Nano Letters 2010;10(2):524-528. 8. Roundy S, Wright PK, Rabaey J. A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications 2003;26(11):1131-1144. 9. Kim HW, Batra A, Priya S, Uchino K, Markley D, Newnham RE, Hofmann HF. Energy harvesting using a piezoelectric "cymbal" transducer in dynamic environment. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 2004;43(9A):6178-6183. 10. Shen D, Choe SY, Kim DJ. Analysis of piezoelectric materials for energy harvesting devices under high-g vibrations. Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers 2007;46(10A):6755-6760. 11. Cao AY, Dickrell PL, Sawyer WG, Ghasemi-Nejhad MN, Ajayan PM. Super-compressible foamlike carbon nanotube films. Science 2005;310(5752):1307-1310. 12. Iijima S, Brabec C, Maiti A, Bernholc J. Structural flexibility of carbon nanotubes. Journal of Chemical Physics 1996;104(5):2089-2092. 13. Falvo MR, Clary GJ, Taylor RM, Chi V, Brooks FP, Washburn S, Superfine R. Bending and buckling of carbon nanotubes under large strain. Nature 1997;389(6651):582-584. 14. Monthioux M, Kuznetsov VL. Who should be given the credit for the discovery of carbon nanotubes? Carbon 2006;44(9):1621-1623. 15. Ebbesen TW. Carbon nanotubes : preparation and properties. Boca Raton: CRC Press; 1997. 296 p. p. 16. Kroto HW, Heath JR, Obrien SC, Curl RF, Smalley RE. C-60 - Buckminsterfullerene. Nature 1985;318(6042):162-163. 17. Iijima S. Helical Microtubules of Graphitic Carbon. Nature 1991;354(6348):56-58. 18. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS. Electronic-Structure of Chiral Graphene Tubules. Applied Physics Letters 1992;60(18):2204-2206. 19. Brcic M, Canadija M, Brnic J, Lanc D, Krscanski S, Vukelic G. FE modelling of multi-walled carbon nanotubes. Estonian Journal of Engineering 2009;15(2):10. 20. White CT, Robertson DH, Mintmire JW. Helical and Rotational Symmetries of Nanoscale Graphitic Tubules. Physical Review B 1993;47(9):5485-5488. 21. Hamada N, Sawada S, Oshiyama A. New One-Dimensional Conductors - Graphitic Microtubules. Physical Review Letters 1992;68(10):1579-1581. 22. Dresselhaus MS, Dresselhaus G, Eklund PC. Science of fullerenes and carbon nanotubes. San Diego: Academic Press; 1996. xviii, 965 p. p. 23. Terrones M, Grobert N, Olivares J, Zhang JP, Terrones H, Kordatos K, Hsu WK, Hare JP, Townsend PD, Prassides K and others. Controlled production of aligned-nanotube bundles. Nature 1997;388(6637):52-55. 24. Ren ZF, Huang ZP, Xu JW, Wang JH, Bush P, Siegal MP, Provencio PN. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998;282(5391):1105-1107. 25. Li WZ, Xie SS, Qian LX, Chang BH, Zou BS, Zhou WY, Zhao RA, Wang G. Large-scale synthesis of aligned carbon nanotubes. Science 1996;274(5293):1701-1703. 26. Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D, Fan X, Dickey EC, Chen J. Continuous production of aligned carbon nanotubes: a step closer to commercial realization. Chemical Physics Letters 1999;303(5-6):467-474. 27. Buchanan RC. Ceramic materials for electronics. New York: Marcel Dekker; 2004. x, 676 p. p. 28. Ozgur U, Alivov YI, Liu C, Teke A, Reshchikov MA, Dogan S, Avrutin V, Cho SJ, Morkoc H. A comprehensive review of ZnO materials and devices. Journal of Applied Physics 2005;98(4):1301 29. Kittel C. Introduction to solid state physics. Hoboken, NJ: Wiley; 2005. xix, 680 p. p. 30. Wang ZL. Towards Self-Powered Nanosystems: From Nanogenerators to Nanopiezotronics. Advanced Functional Materials 2008;18(22):3553-3567. 31. Solymar L, Walsh D. Electrical properties of materials. Oxford ; New York: Oxford University Press; 2004. xiv, 402 p. p. 32. Wang XD, Liu J, Song JH, Wang ZL. Integrated nanogenerators in biofluid. Nano Letters 2007;7(8):2475-2479. 33. Andrews R, Jacques D, Qian DL, Rantell T. Multiwall carbon nanotubes: Synthesis and application. Accounts of Chemical Research 2002;35(12):1008-1017. 34. Fang WL, Chu HY, Hsu WK, Cheng TW, Tai NH. Polymer-reinforced, aligned multiwalled carbon nanotube composites for microelectromechanical systems applications. Advanced Materials 2005;17(24):2987-2992. 35. Hasegawa S, Nishida S, Yamashita T, Asahi H. Field electron emission from polycrystalline GaN nanorods. Journal of Ceramic Processing Research 2005;6(3):245-249. 36. Su WS, Leung TC, Chan CT. Work function of single-walled and multiwalled carbon nanotubes: First-principles study. Physical Review B 2007;76(23):235413(8) 37. Shiraishi M, Ata M. Work function of carbon nanotubes. Carbon 2001;39(12):1913-1917. 38. Gao RP, Pan ZW, Wang ZL. Work function at the tips of multiwalled carbon nanotubes. Applied Physics Letters 2001;78(12):1757-1759. 39. Erol A, Okur S, Comba B, Mermer O, Arikan MC. Humidity sensing properties of ZnO nanoparticles synthesized by sol-gel process. Sensors and Actuators B-Chemical 2010;145(1):174-180. 40. Lin YH. Mechanical properties of carbon nanotube/metal oxide composite [dissertation]. Hsinchu (Taiwan): National Tsing Hua University. Forthcoming. 41. Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 1996;381(6584):678-680. 42. Mayo MJ, Siegel RW, Liao YX, Nix WD. Nanoindentation of Nanocrystalline Zno. Journal of Materials Research 1992;7(4):973-979.
|