(3.215.180.226) 您好!臺灣時間:2021/03/09 02:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林呈泓
研究生(外文):Lin, Cheng-Hung
論文名稱:以原子層化學氣相沉積製備二氧化鉿與鑲嵌鈦金屬夾層於電阻轉換特性之研究
論文名稱(外文):Study on the resistive switching characteristics of atomic layer deposition HfO2 film with Ti interlayers
指導教授:吳泰伯
指導教授(外文):Wu, Tai-Bor
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:107
中文關鍵詞:電阻轉換原子層化學氣相沉積二氧化鉿鈦金屬夾層
外文關鍵詞:resistive switchingatomic layer depositionHfO2Ti interlayers
相關次數:
  • 被引用被引用:0
  • 點閱點閱:247
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
In this thesis, we have investigated the resistive switching characteristics of HfO2 thin film in Pt/Ti/HfO2/TiN capacitor structure. The 10-nm-thick HfO2 films are deposited on TiN/Ti/SiO2/Si substrate by atomic layer deposition (ALD), which can well control the film thickness precisely with high uniformity. The Pt top electrode and Ti inter layer are prepared by DC sputtering. The Pt/Ti/HfO2/TiN capacitors show distinct bipolar resistive switching characteristics, which the bipolar polarity would reverse during operation, with the change of Ti thickness. According to post-metal annealing effect at different temperatures, dependence of cell area on resistance state, material analysis, and electrical characteristics, it is tried to build up a model to elucidate the phenomenon of polarity reverse. In an addition, an improvement of resistive switching stability of HfO2-based memory can be achieved by using the Ti reactive interlayer, including good switching endurance and high temperature retention.
Chapter 1. Introduction 11
1.1 Introduction 11
1.2 Research Motivation 13
Chapter 2. Literature Review 16
2.1 Semiconductor Memory 16
2.2 Emerging Non-volatile Memory 19
2.2.1 FeRAM (Ferroelectric RAM) 19
2.2.2 MRAM (Magnetoresistive RRAM) 20
2.2.3 PCRAM (Phase Chang RAM) 22
2.2.4 RRAM (Resistance RAM) 23
2.2.4.1 Perovskite oxide 26
2.2.4.2 Transition metal oxide 29
2.3 Effect of anodic interface on resistive switching 34
2.4 Mechanism of resistive switching 45
2.4.1 Conducting filament model 45
2.4.2 Interface-type conducting path 46
Chapter 3. Experimental Procedures 50
3.1 Motivation of experiment 50
3.2 Substrate and bottom electrode (TiN) fabrication 51
3.3 Fabrication of HfO2 thin film 51
3.4 Fabrication of Ti interlayer and Pt capping layer 51
3.5 Post-metal annealing process (PMA) 52
3.6 Physical analysis and electrical measurement 52
3.6.1 Transmission electron microscope (TEM) 52
3.6.2 Thin film composition analysis 52
3.6.3 Electrical analysis 53
Chapter 4. Results and Discussion 56
4.1 Structural and chemical analysis 56
4.1.1 Transmission electron microscope (TEM) 56
4.1.2 Thin film composition Analysis 56
4.1.2.1 X-ray photoelectron spectroscopy (XPS) analysis 56
4.1.2.2 Nano-auger electron spectroscopy (nano-AES) analysis 58
4.2 Electrical characteristics 63
4.2.1 As-deposition 63
4.2.1.1 Typical IV relation 63
4.2.1.2 Endurance and retention test 72
4.2.1.3 Resistance dependence on cell area 74
4.2.1.4 Polarity reverse model for as-deposition 80
4.2.2 Post-metal annealing 83
4.2.2.1 Typical IV Relation 84
4.2.2.2 High temperature retention test 97
4.2.2.3 Polarity reverse model after PMA 99
Chapter 5. Conclusion 101
Reference 102
1 Evalueserve, "Non-volatile Memory Market," BCC Research, SMC060A, July 2005.

2 A. Sawa, "Resistive switching in transition metal oxides," Materials Today 11 (6), 28-36 (2008).

3 H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, "Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM," IEDM Tech. Dig., 297-300 (2008).

4 C. H. Chen, "Study on the HfO2-TiO2 thin films for Resistance Random Access Memory," Master thesis, National Tsing Hua University, July 2009.

5 Y. T. Chen, "Atomic Layer Deposition of HfON Thin Film for Charge Trapping Flash Memory Application," Master thesis, National Tsing Hua University, July 2009.

6......C. Muller, "Emerging Concepts in Non-volatile Memory Technologies - Era of Resistance Switching Memories," ISVLSI '08. IEEE Computer Society Annual, p.3, April 2008.

7 G. Muller, T. Happ, M. Kund, G. Y. Lee, N. Nagel, and R. Sezi, "Status and outlook of emerging nonvolatole memory technologies," IEDM Tech. Dig., 567-570 (2004).

8 簡昭欣、呂正傑、陳志遠、張茂南、許世祿、趙天生, "先進記憶體簡介, " 國研科技創刊號

9 http://en.wikipedia.org/wiki/Random_access_memory

10 劉志益、曾俊元, "電阻式非揮發記憶體之近期發展 "

11 G. Muller, N. Nagel, C. U. Pinnowa, and T. Rohr, "Emerging Non-Volatile Memory Technologies," ESSCIRC 2003, 37-44 (2003).

12 葉林秀、李佳謀、徐明豐、吳德和, "磁阻式隨機存取記憶體技術的發展 - 現在與未來, " 物理雙月刊(廿六卷四期),p.607-619, 2004

13…W. Y. Chang, "Characteristics of (Pr,Ca)MnO3 thin films on LaNiO3-electrodized Si substrate for nonvolatile resistance random access memory application, " Master thesis, National Tsing Hua University, July 2006.

14 I. G. Baek, M. S. Lee, S. Seo, M. J. Lee, D. H. Seo, D.-S. Suh, J. C. Park, S. O. Park, H. S. Kim, I. K. Yoo, U-In Chung and J. T. Moon, "Highly Scalable Non-volatile Resistive Memory using Simple Binary Oxide Driven by Asymmetric Unipolar Voltage Pulses," IEDM Tech. Dig., 587-590 (2004).

15 S. Q. Liu, N. J. Wu, and A. Ignatiev, "Electric-pulse-induced reversible resistance change effect in magnetoresistive films," Applied Physics Letters 76 (19), 2749-2751 (2000).

16 A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokura, "Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface," Applied Physics Letters 85 (18), 4073-4075 (2004).

17 A. Beck, J. G. Bednorz, C. Gerber, C. Rossel, and D. Widmer, "Reproducible switching effect in thin oxide films for memory applications," Applied Physics Letters 77 (1), 139-141 (2000).

18 S. Seo, M. J. Lee, D. H. Seo, E. J. Jeoung, D. S. Suh, Y. S. Joung, I. K. Yoo, I. R. Hwang, S. H. Kim, I. S. Byun, J. S. Kim, J. S. Choi, and B. H. Park, "Reproducible resistance switching in polycrystalline NiO films," Applied Physics Letters 85 (23), 5655-5657 (2004).


19 W. Y. Chang, Y. C. Lai, T. B. Wu, S. F. Wang, F. Chen, and M. J. Tsai, "Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications," Applied Physics Letters 92 (2) (2008).

20 L. P. Ma, J. Liu, S. M. Pyo, and Y. Yang, "Organic bistable light-emitting devices," Applied Physics Letters 80 (3), 362-364 (2002).

21 L. P. Ma, J. Liu, and Y. Yang, "Organic electrical bistable devices and rewritable memory cells," Applied Physics Letters 80 (16), 2997-2999 (2002).

22 A. Asamitsu, Y. Tomioka, H. Kuwahara, and Y. Tokura, "Current switching of resistive states in magnetoresistive manganites," Nature 388 (6637), 50-52 (1997).

23 Y. Tokura and Y. Tomioka, "Colossal magnetoresistive manganites," Journal of Magnetism and Magnetic Materials 200 (1-3), 1-23 (1999).

24 http://en.wikipedia.org/wiki/File:Ohmic3.png

25 C. J. Kim, B. I. Kim, and I. W. Chen, "Dependence of electrode on switching effect of Pr1-xCaxMnO3 thin film," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers 44 (3), 1260-1261 (2005).

26 K. Tsubouchi, I. Ohkubo, H. Kumigashira, M. Oshima, Y. Matsumoto, K. Itaka, T. Ohnishi, M. Lippmaa, and H. Koinuma, "High-throughput characterization of metal electrode performance for electric-field-induced resistance switching in metal/Pr0.7Ca0.3MnO3/metal structures," Advanced Materials 19 (13), 1711-+ (2007).

27 K. Shono, H. Kawano, T. Yokota, and M. Gomi, "Origin of negative differential resistance observed on bipolar resistance switching device with Ti/Pr0.7Ca0.3MnO3/Pt structure," Applied Physics Express 1 (5) (2008).

28 R. Yang, X. M. Li, W. D. Yu, X. D. Gao, D. S. Shang, X. J. Liu, X. Cao, Q. Wang, and L. D. Chen, "The polarity origin of the bipolar resistance switching behaviors in metal/La0.7Ca0.3MnO3/Pt junctions," Applied Physics Letters 95 (7) (2009).

29 C. B. Lee, B. S. Kang, A. Benayad, M. J. Lee, S. E. Ahn, K. H. Kim, G. Stefanovich, Y. Park, and I. K. Yoo, "Effects of metal electrodes on the resistive memory switching property of NiO thin films," Applied Physics Letters 93 (4) (2008).

30 Y. H. Do, J. S. Kwak, J. P. Hong, K. Jung, and H. Im, "Al electrode dependent transition to bipolar resistive switching characteristics in pure TiO2 films," Journal of Applied Physics 104 (11) (2008).

31 X. P. Wang, Y. Y. Chen, L. Pantisano, L. Goux, M. Jurczak, G. Groeseneken, and D. J. Wouters, "Effect of Anodic Interface Layers on the Unipolar Switching of HfO2-based Resistive RAM," VLSI-TSA, 140-141 (2010).

32 P. S. Chen, H. Y. Lee, Y. S. Chen, F. Chen, and M. J. Tsai, "Improved Bipolar Resistive Switching of HfOx/TiN Stack with a Reactive Metal Layer and Post Metal Annealing," Japanese Journal of Applied Physics 49 (4) (2010).

33 R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nature Materials 6 (11), 833-840 (2007).

34 K. Kinoshita, T. Tamura, M. Aoki, Y. Sugiyama, and H. Tanaka, "Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide," Applied Physics Letters 89 (10) (2006).

35 Y. M. Kim and J. S. Lee, "Reproducible resistance switching characteristics of hafnium oxide-based nonvolatile memory devices," Journal of Applied Physics 104 (11) (2008).

36 G. S. Park, X. S. Li, D. C. Kim, R. J. Jung, M. J. Lee, and S. Seo, "Observation of electric-field induced Ni filament channels in polycrystalline NiOx film," Applied Physics Letters 91 (22) (2007).

37 U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, "Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory (RRAM) Devices," Ieee Transactions on Electron Devices 56 (2), 193-200 (2009).

38 U. Russo, D. Ielmini, C. Cagli, and A. L. Lacaita, "Filament Conduction and Reset Mechanism in NiO-Based Resistive-Switching Memory (RRAM) Devices," Ieee Transactions on Electron Devices 56 (2), 186-192 (2009).

39 K. Szot, W. Speier, G. Bihlmayer, and R. Waser, "Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3," Nature Materials 5 (4), 312-320 (2006).

40 S. Tsui, A. Baikalov, J. Cmaidalka, Y. Y. Sun, Y. Q. Wang, Y. Y. Yue, C. W. Chu, L. Chen, and A. J. Jacobson, "Field-induced resistive switching in metal-oxide interfaces," Applied Physics Letters 85 (2), 317-319 (2004).

41 X. Chen, N. J. Wu, J. Strozier, and A. Ignatiev, "Direct resistance profile for an electrical pulse induced resistance change device," Applied Physics Letters 87 (23) (2005).

42 Y. B. Nian, J. Strozier, N. J. Wu, X. Chen, and A. Ignatiev, "Evidence for an oxygen diffusion model for the electric pulse induced resistance change effect in transition-metal oxides," Physical Review Letters 98 (14) (2007).

43 T. Fujii, M. Kawasaki, A. Sawa, H. Akoh, Y. Kawazoe, and Y. Tokura, "Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3," Applied Physics Letters 86 (1) (2005).

44 R. Fors, S. I. Khartsev, and A. M. Grishin, "Giant resistance switching in metal-insulator-manganite junctions: Evidence for Mott transition," Physical Review B 71 (4) (2005).

45 T. Oka and N. Nagaosa, "Interfaces of correlated electron systems: Proposed mechanism for colossal electroresistance," Physical Review Letters 95 (26) (2005).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔