1.http://www.eng.dnt-solar.com/environment.html
2.R. M. Swanson, Point-contact solar cell, AP-2859 Research project 790-2, Stanford University
3.Armin G Aberle, Surface passivation of crystalline silicon solar cells: A review, Progress in Photovoltaics Research and Applications, 8 473-487
4.Thomas Lauinger, Jens Moschner, Armin G. Aberle, and Rudolf Hezel, Optimization and characterization of remote plasma-enhanced chemical vapor deposition silicon nitride for the passivation of p-type crystalline siliconsurfaces, The Journal of Vacuum Science and Technology A, 16 2 Mar/Apr 1998
5.Jan Schmidt, Mark Kerr, Highest-quality surface passivation of low-resistivity p-type silicon using stoichiometric PECVD silicon nitride, Solar Energy Materials & Solar Cells, 65 (2001) 585-591
6.B. Karunagaran, S.J. Chung, S. Velumani, E.-K. Suh, Effect of rapid thermal annealing on the properties of PECVD SiNx thin films, Materials Chemistry and Physics, 106 (2007) 130–133
7.A. Ebong, P. Doshi, S. Narasimha, A. Rohatgi, J. Wang, and M. A. El-Sayed, The effect of low and high temperature anneals on the hydrogen content and passivation of Si surface coated with SiO2 and SiN films, Journal of The Electrochemical Society, 146 (5) 1921-1924 (1999)
8.E. H. Nicollian., J. R. Brews, MOS Physics and Technology, A John Wiley & Sons Inc (1982)
9.M. J. Uren, J. H. Stathis, E. Cartier, Conductance measurements on Pb centers at the (111) Si:SiO2 interface, Journal of Applied Physics 80(7), 1 October 1996
10.K. K. Hung, Y. C. Cheng, Characterization of Si:SiO2 interface traps in p-metal-oxide-semicondeucor structures with thin oxides by conductance technique, Journal of Applied Physics 62 (10), 15 November 1987
11.T. Sakurai, T. Sugano, Theory of continuously distributed trap states at Si‐SiO2 interfaces, Journal of Applied Physic 52(4), 1 January 1981
12.V. K. Gueorguiev, et al., Electron trapping probabilities in hydrogen ion implanted silicon dioxide films thermally grown on polycrystalline silicon, Microelectronics Journal 31(2000) 207-211
13.A.A. Istratov, H. Hieslmair, E.R. Weber, Iron and its complexes in silicon, Applied Physics A 69,13-44(1999)
14.Daniel Macdonalda, AndreÂs Cuevas, Jennifer Wong-Leung, Capture cross sections of the acceptor level of iron-boron pairs in p-type silicon by injection-level dependent lifetime measurements, Journal of Applied Physic 89(12), 15 June 2001
15.D. K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons Inc (1998)
16.HP 4284 Manual, http://cp.literature.agilent.com/litweb/pdf/04284-90100.pdf
17.Duygu Kuzum, Interface-engineered Ge MOSFETS for future high performance CMOS applications, Stanford University, Dec 2009
18.Hyundoek YANG, Yunik SON, Sangmoo CHOI and Hyunsang HWANG, Improved Conductance Method for Determining Interface Trap Density of Metal–Oxide–Semiconductor Device with High Series Resistance, Japanese Journal of Applied Physics Vol. 44, No. 48, 2005, pp. L 1460–L 1462
19.W. A. Hill., C. C. Coleman., A Single-Frequency Approximation for Interface State Density Determination, Solid-State Electron, 23, 987 (1980)
20.周仁鈞 甘炯耀, MOS結構的電容-電壓曲線之量測與應用, 國立清華大學 碩士論文 199821.WT2000 Manual http://manual.ovislinkcorp.com/AirLive_WT2000ARM_Manual.pdf
22.Kevin Lauer, Abdelazize Laades, Hartmut Übensee, Alexander Lawerenz and Heinrich Metzner, Evaluation of the microwave detected photoconductance decay in multicrystalline silicon., Proc.22nd European. PVSEC, Milan, 1344-1347 (2007)
23.Martin Schijfthaler, Rolf Brendel, Sensitivity and transient response of microwave reflection measurements, Journal of Applied Physics, 77(7), 1 April 1995
24.K.S. K. Kwa, S. Chattopadhyay, N. D. Jankovic, S. H. Olsen, L. S. Driscoll and A. G. O’Neill, A model for capacitance reconstruction from measured lossy MOS capacitance–voltage characteristics, Semiconductor Science and Technology, 18 82–87(2003)