H. S. Nalwa (ed.), “Handbook of Nanostructured Materials and Nanotechnology”, Academic Press (2000).
V. M. Shalaev and M. Moskovits (eds.), “Nanostructured Materials: Clusters, Composites, and Thin Films”, American Chemical Society, Washington, DC, (1997).
A. S. Edelstein and R. C. Cammarata (eds.), “Nanomaterials: Synthesis, Properties and Applications”, Institute of Physics, UK, (1996).
M. G. Bawendi, M. L. Steigerwald, L. E. Brus, “The Quantum-Mechanics of Larger Semiconductor Clusters”, Annual Review of Physical Chemistry, 41 (1990) 477.
S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature, 354 (1991) 56.
Y. Qin, X. Wang, and Z. L. Wang, “Microfibre-Nanowire Hybrid Structure for Energy Scavenging”, Nature, 451 (2008) 809.
C. R. Martin, “Nanomaterials: A Membrane-Based Synthetic Approach”, Science, 266 (1994) 1961.
C. G. Wu and T. Bein, “Conducting Carbon Wires in Ordered, Nanometer-Sized Channels”, Science, 266 (1994) 1013.
B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, “Single-Crystalline Nanowires of Ag2Se Can Be Synthesized by Templating against Nanowires of Trigonal Se”, Journal of the American Chemical Society, 123 (2001) 11500.
B. Gates, Y. Yin, and Y. Xia, “A Solution-Phase Approach to the Synthesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10-30 nm”, Journal of the American Chemical Society, 122 (2000) 12582.
S. T. Lee, N. Wang, and C. S. Lee, “Semiconductor Nanowires: Synthesis, Structure and Properties”, Materials Science and Engineering A, 286 (2000) 16.
N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si Nanowires Grown from Silicon Oxide”, Chemical Physics Letters, 299 (1999) 237.
D. B. Yu, D. B. Wang, W. C. Yu, and Y. T. Qian, “Synthesis of ITO Nanowires and Nanorods with Corundum Structure by a Co-Precipitation-Anneal Method”, Materials Letters, 58 (2003) 84.
張家誠, “Al-Si 薄膜上合成氧化鋁奈米線”,國立清華大學材料科學工程研究所, 2008.
G. W. Sears, “A Growth Mechanism for Mercury Whiskers”, Acta Metallurgica, 3 (1955) 361.
Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides”, Science, 291 (2001) 1947.
R. S. Wagner, and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Applied Physics Letters, 4 (1964) 89.
R. S. Wagner, W. C. Ellis, K. A. Jackson, and S.M. Arnold, “Study of the Filamentary Growth of Silicon Crystals from the Vapor”, Journal of Applied Physics, 35 (1964) 2993.
A. P. Levitt, “Whisker Technology”, Wiley–Interscience, New York, (1970).
Y. Wu, and P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth”, Journal of the American Chemical Society, 123 (2001) 3165.
W. A. Deer, R. A. Howie, and J. Zussman, "An Introduction to the Rock-forming Minerals", 2nd ed.,(1992) p. 558-569.
D. Simeone, C. D. Thiriet , D. Gosset, P. Daniel, M. Beauvy, “Order–Disorder Phase Transition Induced by Swift Ions in MgAl2O4 and ZnAl2O4 Spinels”, Journal of Nuclear Materials, 300 (2002) 151.
A. A. Da Silva, A. D. Goncalves, and M. R. Davolos, “Characterization of Nanosized ZnAl2O4 Spinel Synthesized by the Sol-gel Method”, Journal of Sol-gel Science and Technology, 49 (2009) 101.
S. Mathur, M. Veith, M. Haas, H. Shen, N. Lecerf, and Volker Huch, “Single-Source Sol–Gel Synthesis of Nanocrystalline
ZnAl2O4:Structural and Optical Properties”, Journal of the American Ceramic Society, 84 (2001) 1921.
Y. Wua, J. Dub, K. L. Choyb, L. L. Hencha, and J. Guo, “Formation of Interconnected Microstructural ZnAl2O4 Films Prepared by Sol–gel Method”, Thin Solid Films, 472 (2005) 150.
X. Y. Chena, C. Maa, Z. J. Zhangb, and B. N. Wang, “Ultrafine Gahnite (ZnAl2O4) Nanocrystals: Hydrothermal Synthesis and Photoluminescent Properties”, Materials Science and Engineering B, 151 (2008) 224.
J. Wrzyszcz, M. Zawadzki, J. Trawczy′nski, H. Grabowskaa, and W. Mi′sta, “Some Catalytic Properties of Hydrothermally Synthesised Zinc Aluminate Spinel” Applied Catalysis A: General, 210 (2001) 263.
M. Zawadzki and J. Wrzyszcz, “Hydrothermal Synthesis of Nanoporous Zinc Aluminate with High Surface Area”, Materials Research Bulletin, 35 (2000) 109.
Y. Wang and K. Wu, “As a Whole: Crystalline Zinc Aluminate Nanotube Array-Nanonet”, Journal of American Chemical Society. 127 (2005) 9686.
H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Go ̈sele, “Monocrystalline Spinel Nanotube Fabrication Based on the Kirkendall Effect”, Nature Materials, 5 (2006) 627.
Y. Yang, D. S. Kim, M. Knez, R. Scholz, A. Berger, E. Pippel, D. Hesse, U. Go ̈sele, and M. Zacharias, “Influence of Temperature on Evolution of Coaxial ZnO/Al2O3 One-Dimensional Heterostructures: From Core-Shell Nanowires to Spinel Nanotubes and Porous Nanowires”, Journal of Physical Chemistry C, 112 (2008) 4068.
H. J. Fan, M. Knez, R. Scholz, D. Hesse, K. Nielsch, M. Zacharias, and U. Go ̈sele, “Influence of Surface Diffusion on the Formation of Hollow Nanostructures Induced by the Kirkendall Effect: The Basic Concept”, Nano Letters, 7 (2007) 993.
H. J. Fan, U. Go ̈sele, and M. Zacharias, “Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Processes: A Review”, Small, 3 (2007) 1660.
R. L. Puurunena, “Surface Chemistry of Atomic Layer Deposition: A Case Study for the Trimethylaluminum/Water Process”, Journal of Applied Physics, 97 (2005) 121301.
H. Kim, H. B. R. Lee, and W. J. Maeng, “Applications of Atomic Layer Deposition to Nanofabrication and Emerging Nanodevices”, Thin Solid Films, 517 (2009) 2563.
柯志忠、林秀芬、蕭健男, 原子層沉積系統設計概念與應用, 科儀新知第二十九卷第一期, 96.8. 14.J. Wrzyszcz, M. Zawadzki, A. M. Trzeciak, and J. J. Ziółkowski, “Rhodium Complexes Supported on Zinc Aluminate Spinel As Catalysts for Hydroformylation and Hydrogenation: Preparation and Activity”, Journal of Molecular Catalysis A: Chemical, 189 (2002) 203.
A. E. Galetti, M. F. Gomez, L. A. Arrua, and M. C. Abello, “Ni Catalysts Supported on Modified ZnAl2O4 for Ethanol Steam Reforming”, Applied Catalysis A: General, 380 (2010) 40.
V. Pugnet, S. Maury, V. Coupard, A. Dandeu, A. A. Quoineaud , J. L. Bonneau, and D. Tichit, “Stability, Activity and Selectivity Study of a Zinc Aluminate Heterogeneous Catalyst for the Transesterification of Vegetable Oil in Batch Reactor”, Applied Catalysis A: General, 374 (2010) 71.
J. J. Vijaya, L. J. Kennedy, and A. Meenakshisundaram, “Humidity Sensing Characteristics of Sol–Gel Derived Sr(II)-added ZnAl2O4 Composites”, Sensors and Actuators B, 127 (2007) 619.
B. Cheng, S. Qu, H. Zhou, and Z. Wang, “Porous ZnAl2O4 Spinel Nanorods Doped with Eu3+:Synthesis and Photoluminescence”, Nanotechnology, 17 (2006) 2982.
X. Y. Chen and C. Ma, “Spherical Porous ZnAl2O4:Eu3+ Phosphors: PEG-Assisted Hydrothermal Growth and Photoluminescence”, Optical Materials, 32 (2010) 415.
V. Singh, R. P. S. Chakradhar, J. L. Rao, and D. K. Kim, “Characterization, EPR and Luminescence Studies of ZnAl2O4:Mn Phosphors”, Journal of Luminescence, 128 (2008) 394.
J. W. Elama, Z. A. Sechrista, and S. M. George, “ZnO-Al2O3 Nanolaminates Fabricated by Atomic Layer Deposition: Growth and Surface Roughness Measurements”, Thin Solid Films, 414 (2002) 43.
J. L. Ogilvie, and A. Wolberg, “An Internal Standard for ElectronSpectroscopy for Chemical Analysis Studies of Supported Catalysts”, Applied Spectroscopy, 26 (1972) 401.
T. L. Barr, “Recent Advances in X-ray Photoelectron Spectroscopy Studies of Oxides”, The Journal of Vacuum Science and Technology A, 9 (1991) 1793.
M. d. Nurul Islam, T. B. Ghosh, K. L. Chopra, and H. N. Acharya, “XPS and X-ray Diffraction Studies of Aluminum-Doped Zinc Oxide Transparent Conducting Films”, Thin Solid Films, 280 (1996) 20.
M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray Photoelectron Spectroscopy and Auger Electron Spectroscopy Studies of Al-doped ZnO Films”, Applied Surface Science, 158 (2000) 134.
P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, “Luminescence Mechanism of ZnO Thin Film Investigated by XPS Measurement”, Applied Physics A, 90 (2008) 317.
H. B. Fan, S. Y. Yang, P. F. Zhang, H. Y. Wei, X. L. Liu, C. M. Jiao, Q. S. Zhu, and Y. H. Chen, “Investigation of Oxygen Vacancy and Interstitial Oxygen Defects in ZnO Films by Photoluminescence and X-Ray Photoelectron Spectroscopy”, Chinese Physics Letters, 24 (2007) 2108.
A.R. Phani, M. Passacantando, and S. Santucci, “Synthesis and Characterization of Zinc Aluminum Oxide Thin Films by Sol–gel Technique”, Materials Chemistry and Physics, 68 (2001) 66
Z. G. Wanga, X. T. Zua, S. Zhub, and L. M. Wang, “Green Luminescence Originates From Surface Defects in ZnO Nanoparticles”, Physica E, 35 (2006) 199.
C. R. Gorla, W. E. Mayo, S. Liang, and Y. Lu, “Structure and Interface-Controlled Growth Kinetics of ZnAl2O4 Formed at the (112 ¯0) ZnO/ (011 ¯2) Al2O3 Interface”, Journal of Applied Physics, 87 (2000) 3736.
R. Nakamura, G. Matsubayashi, H. Tsuchiya, S. Fujimoto, and H. Nakajima, “Formation of Oxide Nanotubes via Oxidation of Fe, Cu and Ni Nanowires and Their Structural Stability: Difference in Formation and Shrinkage Behavior of Interior Pores”, Acta Materialia, 57 (2009) 5046.
Z. Q. Yu, D. Chang, and Li, “Blue Photoluminescent Properties of Pure Nanostructured γ-Al2O3”, Journal of Material Research, 16 (2001) 1890.
Y. D. Ivakin, M. N. Danchevskaya, O. G. Ovchinnikova, and G. P. Muravieva, “Thermovaporous Synthesis of Fine Crystalline Gahnite (ZnAl2O4)”, Journal of Material Science, 41 (2006) 1377.
A. A. da Silva. A. S. Goncalves, M. R. Davolos, and S. H. Santagneli, “Al3+ Environments in Nanostructured ZnAl2O4 and Their Effects on the Luminescence Propertied”, Journal of Nanoscience and Nanotechnology, 8 (2008) 5690.
M. Schuisky, J. W. Elam, and S. M. George, “In Situ Resistivity Measurements During the Atomic Layer Deposition of ZnO and W Thin Films”, Applied Physics Letters, 81 (2002) 180.