(3.235.11.178) 您好!臺灣時間:2021/02/26 04:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張祖翰
論文名稱:氧化鋁/氧化鋅核殼奈米線合成及其結構之研究
論文名稱(外文):Study on the Synthesis and Structural Characterization of Al2O3/ZnO Core-Shell Nanowires
指導教授:林樹均
學位類別:碩士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:91
中文關鍵詞:奈米線原子層沉積氧化鋁氧化鋅
相關次數:
  • 被引用被引用:1
  • 點閱點閱:166
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以熱蒸鍍法與原子層沉積製程合成出氧化鋁/氧化鋅核殼層奈米線,在退火後成功的得到鋁酸鋅奈米線。實驗結果顯示,不同退火溫度以及退火氣氛會影響奈米線表面形貌粗糙程度;奈米線內具有雙晶晶界,雙晶晶界的存在會影響氧化鋅與氧化鋁之間的擴散,進而造成奈米線球化情形的發生。藉由穿透式電子顯微鏡的分析,確認900 °C退火5小時後奈米線為單晶的尖晶石鋁酸鋅結構。由X光光電子能譜儀分析,發現在氬氣氣氛退火造成奈米線表面的產生大量氧缺陷,而在大氣下退火則能消除氧缺陷的存在。奈米線退火後的陰極發光光譜於330及380 nm的峰值為鋁酸鋅本身的能隙造成的訊號,而在氬氣退火後奈米線於640 nm 的峰值為氧缺陷所造成。在電學性質量測方面,奈米線在氬氣封管退火後電阻率約為105 μΩ-cm,電阻率的下降是因為奈米線氧空缺位置的電子提高了載子濃度。
誌謝 I
摘要 IV
目錄 V
圖目錄 IX
表目錄 XIV
一、 前言 1
二、 文獻回顧 2
2-1奈米科技的發展 2
2-2一維奈米結構之定義與發展 4
2-3奈米線的合成方法 5
2-3-1模板法直接合成一維奈米結構 5
2-3-2水熱化學合成 5
2-3-3氧化物輔助成長 8
2-3-4溶膠凝膠法 9
2-3-5熱蒸鍍法 9
2-4奈米線的成長機制 11
2-4-1氣相固相成長 11
2-4-2氣相-液相-固相成長機制 13
2-5鋁酸鋅奈米結構 17
2-5-1 鋁酸鋅奈米結構的製備 18
2-5-2 柯肯達爾效應 19
2-5-3原子層沉積技術 19
2-5-4鋁酸鋅的性質以及應用 21
2-6 實驗動機與目的 22
三、 實驗方法 23
3-1實驗流程 23
3-1-1鋁矽混合粉末配置 23
3-1-2鋁矽共濺鍍薄膜的製備 24
3-1-3氧化鋁奈米線的合成 26
3-1-4鋁酸鋅奈米線的製程 28
3-2奈米線結構分析、成分分析與性質量測 29
3-2-1場發射掃描式電子顯微鏡 29
3-2-2穿透式電子顯微鏡 29
3-2-3能量散射光譜儀 30
3-2-4聚焦離子束與電子束顯微系統 30
3-2-5 X光光電子能譜儀 31
3-2-6陰極激發光光譜 31
3-2-7半導體參數量測儀 32
四、 結果與討論 33
4-1鋁矽共濺鍍薄膜上合成氧化鋁奈米線 33
4-1-1氧化鋁奈米線形貌 33
4-1-2氧化鋁奈米線的微結構以及成分分析 33
4-2氧化鋁/氧化鋅核殼層奈米線 35
4-3退火溫度的影響 36
4-4退火氣氛的影響 38
4-5氧化鋁/氧化鋅奈米線的微結構以及成分分析 40
4-5-1氧化鋁/氧化鋅核殼層奈米線 40
4-5-2氧化鋁/氧化鋅奈米線在大氣氣氛下900 °C退火5小時 42
4-5-3氧化鋁/氧化鋅奈米線在氬氣氣氛石英封管後900 °C退火5小時 52
4-6 XPS定性分析 59
4-7氧化鋁/氧化鋅奈米線擴散機制的探討 67
4-7-1 退火溫度 67
4-7-2退火氣氛 69
4-8奈米線的CL性質量測 72
4-9奈米線的電性量測 76
五、 結論 81
六、 未來研究方向 83
七、 參考文獻 84


H. S. Nalwa (ed.), “Handbook of Nanostructured Materials and Nanotechnology”, Academic Press (2000).
V. M. Shalaev and M. Moskovits (eds.), “Nanostructured Materials: Clusters, Composites, and Thin Films”, American Chemical Society, Washington, DC, (1997).
A. S. Edelstein and R. C. Cammarata (eds.), “Nanomaterials: Synthesis, Properties and Applications”, Institute of Physics, UK, (1996).
M. G. Bawendi, M. L. Steigerwald, L. E. Brus, “The Quantum-Mechanics of Larger Semiconductor Clusters”, Annual Review of Physical Chemistry, 41 (1990) 477.
S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature, 354 (1991) 56.
Y. Qin, X. Wang, and Z. L. Wang, “Microfibre-Nanowire Hybrid Structure for Energy Scavenging”, Nature, 451 (2008) 809.
C. R. Martin, “Nanomaterials: A Membrane-Based Synthetic Approach”, Science, 266 (1994) 1961.
C. G. Wu and T. Bein, “Conducting Carbon Wires in Ordered, Nanometer-Sized Channels”, Science, 266 (1994) 1013.
B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, “Single-Crystalline Nanowires of Ag2Se Can Be Synthesized by Templating against Nanowires of Trigonal Se”, Journal of the American Chemical Society, 123 (2001) 11500.
B. Gates, Y. Yin, and Y. Xia, “A Solution-Phase Approach to the Synthesis of Uniform Nanowires of Crystalline Selenium with Lateral Dimensions in the Range of 10-30 nm”, Journal of the American Chemical Society, 122 (2000) 12582.
S. T. Lee, N. Wang, and C. S. Lee, “Semiconductor Nanowires: Synthesis, Structure and Properties”, Materials Science and Engineering A, 286 (2000) 16.
N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, “Si Nanowires Grown from Silicon Oxide”, Chemical Physics Letters, 299 (1999) 237.
D. B. Yu, D. B. Wang, W. C. Yu, and Y. T. Qian, “Synthesis of ITO Nanowires and Nanorods with Corundum Structure by a Co-Precipitation-Anneal Method”, Materials Letters, 58 (2003) 84.
張家誠, “Al-Si 薄膜上合成氧化鋁奈米線”,國立清華大學材料科學工程研究所, 2008.
G. W. Sears, “A Growth Mechanism for Mercury Whiskers”, Acta Metallurgica, 3 (1955) 361.
Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides”, Science, 291 (2001) 1947.
R. S. Wagner, and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Applied Physics Letters, 4 (1964) 89.
R. S. Wagner, W. C. Ellis, K. A. Jackson, and S.M. Arnold, “Study of the Filamentary Growth of Silicon Crystals from the Vapor”, Journal of Applied Physics, 35 (1964) 2993.
A. P. Levitt, “Whisker Technology”, Wiley–Interscience, New York, (1970).
Y. Wu, and P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth”, Journal of the American Chemical Society, 123 (2001) 3165.
W. A. Deer, R. A. Howie, and J. Zussman, "An Introduction to the Rock-forming Minerals", 2nd ed.,(1992) p. 558-569.
D. Simeone, C. D. Thiriet , D. Gosset, P. Daniel, M. Beauvy, “Order–Disorder Phase Transition Induced by Swift Ions in MgAl2O4 and ZnAl2O4 Spinels”, Journal of Nuclear Materials, 300 (2002) 151.
A. A. Da Silva, A. D. Goncalves, and M. R. Davolos, “Characterization of Nanosized ZnAl2O4 Spinel Synthesized by the Sol-gel Method”, Journal of Sol-gel Science and Technology, 49 (2009) 101.
S. Mathur, M. Veith, M. Haas, H. Shen, N. Lecerf, and Volker Huch, “Single-Source Sol–Gel Synthesis of Nanocrystalline
ZnAl2O4:Structural and Optical Properties”, Journal of the American Ceramic Society, 84 (2001) 1921.
Y. Wua, J. Dub, K. L. Choyb, L. L. Hencha, and J. Guo, “Formation of Interconnected Microstructural ZnAl2O4 Films Prepared by Sol–gel Method”, Thin Solid Films, 472 (2005) 150.
X. Y. Chena, C. Maa, Z. J. Zhangb, and B. N. Wang, “Ultrafine Gahnite (ZnAl2O4) Nanocrystals: Hydrothermal Synthesis and Photoluminescent Properties”, Materials Science and Engineering B, 151 (2008) 224.
J. Wrzyszcz, M. Zawadzki, J. Trawczy′nski, H. Grabowskaa, and W. Mi′sta, “Some Catalytic Properties of Hydrothermally Synthesised Zinc Aluminate Spinel” Applied Catalysis A: General, 210 (2001) 263.
M. Zawadzki and J. Wrzyszcz, “Hydrothermal Synthesis of Nanoporous Zinc Aluminate with High Surface Area”, Materials Research Bulletin, 35 (2000) 109.
Y. Wang and K. Wu, “As a Whole: Crystalline Zinc Aluminate Nanotube Array-Nanonet”, Journal of American Chemical Society. 127 (2005) 9686.
H. J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Go ̈sele, “Monocrystalline Spinel Nanotube Fabrication Based on the Kirkendall Effect”, Nature Materials, 5 (2006) 627.
Y. Yang, D. S. Kim, M. Knez, R. Scholz, A. Berger, E. Pippel, D. Hesse, U. Go ̈sele, and M. Zacharias, “Influence of Temperature on Evolution of Coaxial ZnO/Al2O3 One-Dimensional Heterostructures: From Core-Shell Nanowires to Spinel Nanotubes and Porous Nanowires”, Journal of Physical Chemistry C, 112 (2008) 4068.
H. J. Fan, M. Knez, R. Scholz, D. Hesse, K. Nielsch, M. Zacharias, and U. Go ̈sele, “Influence of Surface Diffusion on the Formation of Hollow Nanostructures Induced by the Kirkendall Effect: The Basic Concept”, Nano Letters, 7 (2007) 993.
H. J. Fan, U. Go ̈sele, and M. Zacharias, “Formation of Nanotubes and Hollow Nanoparticles Based on Kirkendall and Diffusion Processes: A Review”, Small, 3 (2007) 1660.
R. L. Puurunena, “Surface Chemistry of Atomic Layer Deposition: A Case Study for the Trimethylaluminum/Water Process”, Journal of Applied Physics, 97 (2005) 121301.
H. Kim, H. B. R. Lee, and W. J. Maeng, “Applications of Atomic Layer Deposition to Nanofabrication and Emerging Nanodevices”, Thin Solid Films, 517 (2009) 2563.
柯志忠、林秀芬、蕭健男, 原子層沉積系統設計概念與應用, 科儀新知第二十九卷第一期, 96.8. 14.
J. Wrzyszcz, M. Zawadzki, A. M. Trzeciak, and J. J. Ziółkowski, “Rhodium Complexes Supported on Zinc Aluminate Spinel As Catalysts for Hydroformylation and Hydrogenation: Preparation and Activity”, Journal of Molecular Catalysis A: Chemical, 189 (2002) 203.
A. E. Galetti, M. F. Gomez, L. A. Arrua, and M. C. Abello, “Ni Catalysts Supported on Modified ZnAl2O4 for Ethanol Steam Reforming”, Applied Catalysis A: General, 380 (2010) 40.
V. Pugnet, S. Maury, V. Coupard, A. Dandeu, A. A. Quoineaud , J. L. Bonneau, and D. Tichit, “Stability, Activity and Selectivity Study of a Zinc Aluminate Heterogeneous Catalyst for the Transesterification of Vegetable Oil in Batch Reactor”, Applied Catalysis A: General, 374 (2010) 71.
J. J. Vijaya, L. J. Kennedy, and A. Meenakshisundaram, “Humidity Sensing Characteristics of Sol–Gel Derived Sr(II)-added ZnAl2O4 Composites”, Sensors and Actuators B, 127 (2007) 619.
B. Cheng, S. Qu, H. Zhou, and Z. Wang, “Porous ZnAl2O4 Spinel Nanorods Doped with Eu3+:Synthesis and Photoluminescence”, Nanotechnology, 17 (2006) 2982.
X. Y. Chen and C. Ma, “Spherical Porous ZnAl2O4:Eu3+ Phosphors: PEG-Assisted Hydrothermal Growth and Photoluminescence”, Optical Materials, 32 (2010) 415.
V. Singh, R. P. S. Chakradhar, J. L. Rao, and D. K. Kim, “Characterization, EPR and Luminescence Studies of ZnAl2O4:Mn Phosphors”, Journal of Luminescence, 128 (2008) 394.
J. W. Elama, Z. A. Sechrista, and S. M. George, “ZnO-Al2O3 Nanolaminates Fabricated by Atomic Layer Deposition: Growth and Surface Roughness Measurements”, Thin Solid Films, 414 (2002) 43.
J. L. Ogilvie, and A. Wolberg, “An Internal Standard for ElectronSpectroscopy for Chemical Analysis Studies of Supported Catalysts”, Applied Spectroscopy, 26 (1972) 401.
T. L. Barr, “Recent Advances in X-ray Photoelectron Spectroscopy Studies of Oxides”, The Journal of Vacuum Science and Technology A, 9 (1991) 1793.
M. d. Nurul Islam, T. B. Ghosh, K. L. Chopra, and H. N. Acharya, “XPS and X-ray Diffraction Studies of Aluminum-Doped Zinc Oxide Transparent Conducting Films”, Thin Solid Films, 280 (1996) 20.
M. Chen, X. Wang, Y. H. Yu, Z. L. Pei, X. D. Bai, C. Sun, R. F. Huang, and L. S. Wen, “X-ray Photoelectron Spectroscopy and Auger Electron Spectroscopy Studies of Al-doped ZnO Films”, Applied Surface Science, 158 (2000) 134.
P. T. Hsieh, Y. C. Chen, K. S. Kao, and C. M. Wang, “Luminescence Mechanism of ZnO Thin Film Investigated by XPS Measurement”, Applied Physics A, 90 (2008) 317.
H. B. Fan, S. Y. Yang, P. F. Zhang, H. Y. Wei, X. L. Liu, C. M. Jiao, Q. S. Zhu, and Y. H. Chen, “Investigation of Oxygen Vacancy and Interstitial Oxygen Defects in ZnO Films by Photoluminescence and X-Ray Photoelectron Spectroscopy”, Chinese Physics Letters, 24 (2007) 2108.
A.R. Phani, M. Passacantando, and S. Santucci, “Synthesis and Characterization of Zinc Aluminum Oxide Thin Films by Sol–gel Technique”, Materials Chemistry and Physics, 68 (2001) 66
Z. G. Wanga, X. T. Zua, S. Zhub, and L. M. Wang, “Green Luminescence Originates From Surface Defects in ZnO Nanoparticles”, Physica E, 35 (2006) 199.
C. R. Gorla, W. E. Mayo, S. Liang, and Y. Lu, “Structure and Interface-Controlled Growth Kinetics of ZnAl2O4 Formed at the (112 ¯0) ZnO/ (011 ¯2) Al2O3 Interface”, Journal of Applied Physics, 87 (2000) 3736.
R. Nakamura, G. Matsubayashi, H. Tsuchiya, S. Fujimoto, and H. Nakajima, “Formation of Oxide Nanotubes via Oxidation of Fe, Cu and Ni Nanowires and Their Structural Stability: Difference in Formation and Shrinkage Behavior of Interior Pores”, Acta Materialia, 57 (2009) 5046.
Z. Q. Yu, D. Chang, and Li, “Blue Photoluminescent Properties of Pure Nanostructured γ-Al2O3”, Journal of Material Research, 16 (2001) 1890.
Y. D. Ivakin, M. N. Danchevskaya, O. G. Ovchinnikova, and G. P. Muravieva, “Thermovaporous Synthesis of Fine Crystalline Gahnite (ZnAl2O4)”, Journal of Material Science, 41 (2006) 1377.
A. A. da Silva. A. S. Goncalves, M. R. Davolos, and S. H. Santagneli, “Al3+ Environments in Nanostructured ZnAl2O4 and Their Effects on the Luminescence Propertied”, Journal of Nanoscience and Nanotechnology, 8 (2008) 5690.

M. Schuisky, J. W. Elam, and S. M. George, “In Situ Resistivity Measurements During the Atomic Layer Deposition of ZnO and W Thin Films”, Applied Physics Letters, 81 (2002) 180.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔