|
1. E. B. Bartlett and R. E. Uhrig, “Nuclear Power Plant Status Diagnostics Using an Artificial Neural Network,” Nucl. Technol.,Vol.97, pp. 272-281, 1992. 2. Y.Ohga and H. Seki, “Abnormal Event Identification in Nuclear Power Plants Using a Neural Network and Knowledge Processing,” Nucl. Technol.,Vol.101, pp. 159, 1993. 3. Y. Bartal, J. Lin, and Robert E. Uhrig, “Nuclear Power Plant Transient Diagnostics Using Artificial Neural Networks that Allow ‘Don’t-Know’ Classifications,” Nucl. Technol., Vol. 110, pp. 436, 1995. 4. D. Roverso, “Soft Computing Tools for Transient classification,” Information Sciences, Vol. 127, pp. 137-156, 2000. 5. D. Roverso, “Plant Diagnostics by Transient Classification: the Aladdin Approach,” International Journal of Intelligent Systems (IJIS), 2002. 6. D. Roverso, “Fault Diagnosis with the Aladdin Transient Classifier,” Proceedings of SPIE, Vol. 5107, pp. 162-171, 2003. 7. Kee-Choon Kwon, “HMM-Based Transient Identification in Dynamic Process,” Transaction on Control Automation, and Systems Engineering, Vol. 2, No. 1, pp.40-4, 2000. 8. Marzio Marseguerra, Enrico Zio, Andrea Oldrini, Enrico Brega, “Fuzzy Identification of Transients in Nuclear Power Plants,” Nuclear Engineering and Design, Vol. 225, pp.285-294, 2003. 9. C. Gottlieb, V. Arzhanov, W. Gudowski, N. Garis, “Feasibility Study on Transient Identification in Nuclear Power Plants Using Support Vector Machines,” Nucl. Technol., Vol. 155, pp. 67, 2006. 10. Jose Antonio Carlos Canedo Medeiros, Roberto Schirru, “Identification of Nuclear Power Plant Transients Using the Particle Swarm Optimization Algorithm,” Annals of Nuclear Energy, Vol. 35, pp. 576-582, 2008. 11. S. Theodoridis and K. Koutroumbas, Pattern Recognition, Academic Press, USA, pp. 283-298, 1999. 12. 「核能發電訓練基本教材-壓水式反應器系統介紹」,台灣電力公司第三核能發電廠,1983。
|