[1] M. Grätzel, “Powering the planet”, Nature, Vol.403, pp.363, 2000.
[2] http://en.wikipedia.org/wiki/Solar_cell.
[3] B. O’Regan, and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film”, Nature, Vol.353, pp.737, 1991.
[4] A. J. Nozik, “Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots”, Annual Review of Physical Chemistry, Vol.52, pp.193-231, 2001.
[5] Y. L. Lee, C. F. Chi, and S. Y. Liau, “CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectron chemical Cell”, Chemistry of Materials, Vol.22, pp.922-927, 2010.
[6] A. J. Nozik,“Quantum dot solar cells”, Physica E, Vol.14, pp.115-120, 2002.
[7] F. Hurd and R. Livingston, “The quantum yields of some dye-sensitized photooxidations”, Journal of Physical Chemistry, Vol.44, pp.865-873, 1940.
[8] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes I”, Journal of Physical Chemistry, Vol. 69, pp.641-647, 1965.
[9] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes II”, Journal of Physical Chemistry, Vol.69, pp.647-656, 1965.
[10] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes III”, Journal of Physical Chemistry, Vol.69, pp.2834-2841, 1965.
[11] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes IV”, Journal of Physical Chemistry, Vol.69, pp.2842-2848, 1965.
[12] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitized zinc oxide: aqueous electrolyte/platinum photocell”, Nature, Vol.261, pp.402-403, 1976.
[13] A. Hagfeldt and M. Grätzel, “Molecular photovoltaics”, Accounts of Chemical Research, Vol.33, pp.269-277, 2000.
[14] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers”, Journal of the American Chemical Society, Vol.127, pp.16835-16847, 2005.
[15] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Aibabaei, Cevey ha Ngoc le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin and M. Gratzel, “Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells”, Journal of ACS NANO, Vol.3, pp.3103-3109, 2009.
[16] L. M. Peter, D. J. Riley, E. J. Tull and K. G. U. Wijayantha, “Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots”, Chemical Communications, Vol.10, pp.1030-1031, 2002.
[17] I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 Films”, Journal of the American Chemical Society, Vol.128, pp.2385-2393, 2006.
[18] J. L. Blackburn, D. C. Selmarten, R. J. Ellingson, M. Jones, O. Micic, and A. J. Nozik, “Electron and hole yransfer from indium phosphide quantum dots”, Journal of Physical Chemistry B, Vol.109, pp.2625-2631, 2005.
[19] R. D. Schaller, V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: implication for solar energy conversion”, Physical Reivew Letters, Vol.92, pp.186601,2004.
[20] S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics”, Nature Materials, Vol.4, pp.138-142, 2005.
[21] S. Hotchandani, P. V. Kamat, “Charge-transfer processes in coupled semiconductor systems. Photochemistry and photoelectrochemistry of the colloidal cadmium sulfide-zinc oxide system”, Journal of Physical Chemistry, Vol.96, pp.6834-6839, 1992.
[22] R. Plass, S. Pelet, J. Krueger and M. Grätzel, “Quantum dot sensitization of organic-inorganic hybrid solar cells”, Journal of Physical Chemistry B, Vol.106, pp.7578, 2002.
[23] H. J. Lee, J. H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Grazel and M. K. Nazeeruddin, “CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity”, Journal of Physical Chemistry C, Vol.112, pp.11600-11608, 2008.
[24] I. N. Levine, Quantum Chemistry 6th ed., (Prentice Hall), 2008. (ISBN: 0132358506)
[25] 邱創斌(洪哲文指導), “量子力學與分子動力分析酵素生物燃料電池性能影響因子”,國立清華大學動力機械系博士論文, 1/2010.[26] G. B. Bachelet, D. R. Hamann, and M. Schlüter, “Pseudopotentials that work: From H to Pu”, Physical Review B, Vol.26, pp.4199-4228, 1982.
[27] D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-conserving pseudopotentials”, Physical Review Letters, Vol.43, pp.1494-1497, 1979.
[28] J. P. Perdew and Y. Wang “Accurate and simple analytic representation of the electron-gas correlation energy”, Physical Review B, Vol.45, pp.13244-13249, 1992.
[29] A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Physical Review A, Vol.38, pp.3090-3100, 1988.
[30] C. Lee, W. Yang and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Physical Review B, Vol.37, pp.785-789, 1988.
[31] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple” Physical Review Letters, Vol.77, pp.3865-3868, 1996.
[32] D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism” Physical Review B, Vol.41, pp.7892-7895, 1990.
[33] 蔡岳璁(洪哲文指導), “計算量子力學於CO在直接甲醇燃料電池觸媒之毒化研究”,國立清華大學動力機械系碩士論文, 6/2006.[34] M. A. L. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E. K. U. Gross, Time-Dependent Density Functional Theory, (Springer), 2006. (ISBN: 3540354220)
[35] 李建豪(郭光宇指導), “以理論計算研究由紫外線造成的大型生物分子DNA損傷”,國立台灣大學物理研究所碩士論文, 7/2007.
[36] http://en.wikipedia.org/wiki/Ultraviolet-visible_spectroscopy
[37] Q. Zhao, P. A. Graf, W. B. Jones, A. Franceschetti, J. Li, L. W. Wang, and K. Kim, “Shape dependence of band-edge exciton fine structure in CdSe nanocrystals”, Nano Letters, Vol.7, pp.3274-3280, 2007.
[38] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[39] PWscf, S. Baroni, A. D. Corso, S. Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, A. Kokalj.
[40] A. D. Backe, “Density-functional thermochemistry. III. The role of exact exchange”, Journal of Chemical Physics, Vol.98, pp.5648-5652, 1993.
[41] P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg”, Journal of Chemical Physics, Vol.82, pp.270-283, 1984.
[42] P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi”, Journal of Chemical Physics, Vol.82, pp.284-298, 1984.
[43] P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals”, Journal of Chemical Physics, Vol.82, pp.299-310, 1984.
[44] M. L. Connolly, “Computation of molecular volume”, Journal of the American Chemical Society, Vol.107, pp.1118-1124, 1985.
[45] H. J. Monkhorst, J.D. Pack, “Special points for Brillouin-zone integrations”, Physical Review B, Vol.13, pp.5188-5192, 1976.
[46] http://en.wikipedia.org/wiki/BFGS_method
[47] W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals”, Chemistry of Materials, Vol.15, pp.2854-2860, 2003.
[48] I. Robel, M. Kuno, and P.V. Kamat, “Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles”, Journal of the American Chemical Society, Vol.129, pp.4136-4137, 2007.
[49] F. Labat, P. Baranek, and C. Adamo, “Structural and electronic properties of selected rutile and anatase TiO2 surfaces: An ab initio investigation”, Journal of Chemical Theory and Computation, Vol.4, pp.341-352, 2008.
[50] M. Egashira, S. Kawasumi, S. Kagawa, and T. Seiyama “Temperature Programmed Desorption Study of Water Adsorbed on Metal Oxides. I. Anatase and Rutile”, Bulletin of the Chemical Society of Japan, Vol.51, pp.3144-3149, 1978.