跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/07 21:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄒年奎
研究生(外文):Tsou, Nian-Kuei
論文名稱:第一原理計算量子點光電性質提升光電化學太陽電池效能研究
論文名稱(外文):First-Principles Investigation on Quantum Dot Photoelectric Properties to Enhancethe the Photoelectrochemical Solar Cell Performance
指導教授:洪哲文洪哲文引用關係
指導教授(外文):Hong, Che-Wun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:71
中文關鍵詞:量子點太陽電池密度泛函理論硒化鎘銳鈦礦能隙寬
外文關鍵詞:quantum dotsolar celldensity functional theorycadmium selenideanataseenergy gap
相關次數:
  • 被引用被引用:1
  • 點閱點閱:475
  • 評分評分:
  • 下載下載:51
  • 收藏至我的研究室書目清單書目收藏:0
本論文希望藉由半導體量子點取代傳統光電化學太陽電池中昂貴的釕錯合物染料,並提升其光電性能。傳統染料僅可吸收特定波長的太陽光,不若量子點可藉由調整粒徑大小,即改變其吸收之能隙寬(energy gap)。故可以此特性製造高效率之量子點敏化太陽電池(quantum dot sensitized solar cells, QDSSC)取代傳統染料敏化太陽電池(dye-sensitized solar cells, DSSC)。
在QDSSC中,量子點的能隙寬將決定何種光子如何將電子由價帶激發至傳導帶,而量子點的最高佔據分子軌道(highest occupied molecular orbital, HOMO)與最低未佔據分子軌道(lowest unoccupied molecular orbital, LUMO),將密切影響電子由量子點注入金屬氧化物半導體的難易,以及電子注入後回流的情形。本研究利用第一原理計算,建立分子尺度的CdSe原子團與奈米尺度的銳鈦礦TiO2(101)表面模型,以時間獨立(time independent)與時間相依(time dependent)的密度泛函理論(density functional theory, DFT),搭配B3LYP(Becke, three-parameter, Lee-Yang-Parr)與PBE(Perdew-Burke-Ernzerhof )兩種不同的交換相關泛函,來計算CdSe原子團的能隙寬、電子軌道與態密度分布(density of states, DOS)。並且分析CdSe原子團在己烷中的溶劑效應,CdSe原子團在TiO2表面的最穩定吸附結構,以及吸附前後CdSe原子團能隙寬的影響。
在實驗部分,使用紫外可見光度計(UV/VIS spectrophotometer)測量CdSe量子點之紫外可見吸收光譜。同時比對實驗與計算結果,發現皆符合量子尺寸效應,亦即藉由縮小CdSe量子點的粒徑,即可增加CdSe量子點的能隙寬。綜合的計算結果可知,可藉由混合多種粒徑的CdSe量子點,達到增加QDSSC中太陽光的吸收率;本論文並且提出CdSe量子點吸附於TiO2上時,電子轉移之適當鍵結模式,藉此可再提升電子注入TiO2之效率。
This research intends to use the semiconductor quantum dots to replace those expensive ruthenium dyes in the traditional photoelectrochemical solar cells. By varying the quantum dot sizes, there is a potential to expand the absorption spectrum to cover all ranges of the sunshine, without changing materials. Under proper nano-structure design, the quantum dot sensitized solar cells (QDSSC) may have higher quantum efficiency than the dye-sensitized solar cells (DSSC).
The energy gaps of variable sized quantum dots (QDs) dominate how the electrons are excited from the valence band to the conduction band by variable frequencies of input photons. The positions of both the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) determines the ability of electron injection to the metal oxide semiconductors. Based on first principles calculation, the molecular structures of (CdSe)n (n=1~16) clusters and the anatase TiO2 (101) surface have been configured and optimized. Both time independent and time dependent density functional theory (DFT), which chose B3LYP (Becke, 3-parameter, Lee-Yang-Parr) and PBE (Perdew-Burke-Ernzerhof) exchange correlation functionals, are employed. Photoelectric properties, such as: electron orbitals, density of states (DOS), HOMO and LUMO (and resultant band gaps) are predicted. They are used to study the solvent effect of CdSe clusters in cyclohexane, binding energy between the CdSe cluster and the TiO2 surface, and the energy spectrum shift after adhesion.
An UV/VIS spectrophotometer was used to measure the absorption spectra of variable sized CdSe quantum dots. The band gaps calculated from the experiment are close to the predictions from the quantum simulation. It is concluded that we can enhance the sunlight absorption by mixing different diameters of CdSe clusters, and a more suitable bonding structure between the CdSe clusters and the TiO2 surface is proposed to promote the electron injection efficiency.
摘要 I
英文摘要 II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 - 1 -
1.1前言 - 1 -
1.2研究動機與目的 - 2 -
1.3量子點敏化太陽電池 - 3 -
1.4文獻回顧 - 6 -
第二章 計算量子力學理論 - 9 -
2.1第一原理計算 - 9 -
2.2 Born-Oppenheimer近似 - 10 -
2.3多電子系統 - 12 -
2.4密度泛函理論 - 14 -
2.4.1 Hohenberg-Kohn原理 - 15 -
2.4.2 Kohn-Sham系統 - 18 -
2.4.3 交換相關泛函 - 19 -
2.4.4 基底函數集合 - 21 -
2.4.5 贗勢與超軟贗勢 - 23 -
2.4.6自洽場計算 - 26 -
2.5時間相依密度泛函理論 - 27 -
2.5.1擴展Runge-Gross定理 - 28 -
2.5.2時間相依Kohn-Sham方程式 - 32 -
2.5.3線性響應定理 - 33-
2.6紫外可見分光光度計原理 - 35 -
第三章 系統模型建構與實驗方法 - 37 -
3.1計算與實驗流程 - 37 -
3.2計算參數設定 - 38 -
3.2.1 G09計算設定 - 38 -
3.2.2 PWscf計算設定 - 40 -
3.2.3 實驗參數設定 - 42-
第四章 計算與實驗結果討論 - 44 -
4.1幾何結構最佳化 - 44 -
4.2 (CdSe)n光電性質分析 - 47 -
4.3 TiO2(101)表面吸附 - 55 -
4.4 CdSe量子點紫外可見光光譜實驗結果 - 61 -
第五章 結論與未來工作建議 - 63 -
5.1結論 - 63 -
5.2 未來工作建議 - 64 -
參考文獻 - 66 -
[1] M. Grätzel, “Powering the planet”, Nature, Vol.403, pp.363, 2000.
[2] http://en.wikipedia.org/wiki/Solar_cell.
[3] B. O’Regan, and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film”, Nature, Vol.353, pp.737, 1991.
[4] A. J. Nozik, “Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots”, Annual Review of Physical Chemistry, Vol.52, pp.193-231, 2001.
[5] Y. L. Lee, C. F. Chi, and S. Y. Liau, “CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectron chemical Cell”, Chemistry of Materials, Vol.22, pp.922-927, 2010.
[6] A. J. Nozik,“Quantum dot solar cells”, Physica E, Vol.14, pp.115-120, 2002.
[7] F. Hurd and R. Livingston, “The quantum yields of some dye-sensitized photooxidations”, Journal of Physical Chemistry, Vol.44, pp.865-873, 1940.
[8] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes I”, Journal of Physical Chemistry, Vol. 69, pp.641-647, 1965.
[9] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes II”, Journal of Physical Chemistry, Vol.69, pp.647-656, 1965.
[10] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes III”, Journal of Physical Chemistry, Vol.69, pp.2834-2841, 1965.
[11] S. Chaberek, A. Shepp and R. J. Allen, “Dye-sensitized photopolymerization processes IV”, Journal of Physical Chemistry, Vol.69, pp.2842-2848, 1965.
[12] H. Tsubomura, M. Matsumura, Y. Nomura and T. Amamiya, “Dye sensitized zinc oxide: aqueous electrolyte/platinum photocell”, Nature, Vol.261, pp.402-403, 1976.
[13] A. Hagfeldt and M. Grätzel, “Molecular photovoltaics”, Accounts of Chemical Research, Vol.33, pp.269-277, 2000.
[14] M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru and M. Grätzel, “Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers”, Journal of the American Chemical Society, Vol.127, pp.16835-16847, 2005.
[15] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Aibabaei, Cevey ha Ngoc le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin and M. Gratzel, “Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells”, Journal of ACS NANO, Vol.3, pp.3103-3109, 2009.
[16] L. M. Peter, D. J. Riley, E. J. Tull and K. G. U. Wijayantha, “Photosensitization of nanocrystalline TiO2 by self-assembled layers of CdS quantum dots”, Chemical Communications, Vol.10, pp.1030-1031, 2002.
[17] I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, “Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 Films”, Journal of the American Chemical Society, Vol.128, pp.2385-2393, 2006.
[18] J. L. Blackburn, D. C. Selmarten, R. J. Ellingson, M. Jones, O. Micic, and A. J. Nozik, “Electron and hole yransfer from indium phosphide quantum dots”, Journal of Physical Chemistry B, Vol.109, pp.2625-2631, 2005.
[19] R. D. Schaller, V. I. Klimov, “High efficiency carrier multiplication in PbSe nanocrystals: implication for solar energy conversion”, Physical Reivew Letters, Vol.92, pp.186601,2004.
[20] S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargent, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics”, Nature Materials, Vol.4, pp.138-142, 2005.
[21] S. Hotchandani, P. V. Kamat, “Charge-transfer processes in coupled semiconductor systems. Photochemistry and photoelectrochemistry of the colloidal cadmium sulfide-zinc oxide system”, Journal of Physical Chemistry, Vol.96, pp.6834-6839, 1992.
[22] R. Plass, S. Pelet, J. Krueger and M. Grätzel, “Quantum dot sensitization of organic-inorganic hybrid solar cells”, Journal of Physical Chemistry B, Vol.106, pp.7578, 2002.
[23] H. J. Lee, J. H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Grazel and M. K. Nazeeruddin, “CdSe quantum dot-sensitized solar cells exceeding efficiency 1% at full-sun intensity”, Journal of Physical Chemistry C, Vol.112, pp.11600-11608, 2008.
[24] I. N. Levine, Quantum Chemistry 6th ed., (Prentice Hall), 2008. (ISBN: 0132358506)
[25] 邱創斌(洪哲文指導), “量子力學與分子動力分析酵素生物燃料電池性能影響因子”,國立清華大學動力機械系博士論文, 1/2010.
[26] G. B. Bachelet, D. R. Hamann, and M. Schlüter, “Pseudopotentials that work: From H to Pu”, Physical Review B, Vol.26, pp.4199-4228, 1982.
[27] D. R. Hamann, M. Schlüter, and C. Chiang, “Norm-conserving pseudopotentials”, Physical Review Letters, Vol.43, pp.1494-1497, 1979.
[28] J. P. Perdew and Y. Wang “Accurate and simple analytic representation of the electron-gas correlation energy”, Physical Review B, Vol.45, pp.13244-13249, 1992.
[29] A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic behavior”, Physical Review A, Vol.38, pp.3090-3100, 1988.
[30] C. Lee, W. Yang and R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Physical Review B, Vol.37, pp.785-789, 1988.
[31] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple” Physical Review Letters, Vol.77, pp.3865-3868, 1996.
[32] D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism” Physical Review B, Vol.41, pp.7892-7895, 1990.
[33] 蔡岳璁(洪哲文指導), “計算量子力學於CO在直接甲醇燃料電池觸媒之毒化研究”,國立清華大學動力機械系碩士論文, 6/2006.
[34] M. A. L. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke, E. K. U. Gross, Time-Dependent Density Functional Theory, (Springer), 2006. (ISBN: 3540354220)
[35] 李建豪(郭光宇指導), “以理論計算研究由紫外線造成的大型生物分子DNA損傷”,國立台灣大學物理研究所碩士論文, 7/2007.
[36] http://en.wikipedia.org/wiki/Ultraviolet-visible_spectroscopy
[37] Q. Zhao, P. A. Graf, W. B. Jones, A. Franceschetti, J. Li, L. W. Wang, and K. Kim, “Shape dependence of band-edge exciton fine structure in CdSe nanocrystals”, Nano Letters, Vol.7, pp.3274-3280, 2007.
[38] Gaussian 09, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
[39] PWscf, S. Baroni, A. D. Corso, S. Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, A. Kokalj.
[40] A. D. Backe, “Density-functional thermochemistry. III. The role of exact exchange”, Journal of Chemical Physics, Vol.98, pp.5648-5652, 1993.
[41] P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg”, Journal of Chemical Physics, Vol.82, pp.270-283, 1984.
[42] P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi”, Journal of Chemical Physics, Vol.82, pp.284-298, 1984.
[43] P. J. Hay and W. R. Wadt, “Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals”, Journal of Chemical Physics, Vol.82, pp.299-310, 1984.
[44] M. L. Connolly, “Computation of molecular volume”, Journal of the American Chemical Society, Vol.107, pp.1118-1124, 1985.
[45] H. J. Monkhorst, J.D. Pack, “Special points for Brillouin-zone integrations”, Physical Review B, Vol.13, pp.5188-5192, 1976.
[46] http://en.wikipedia.org/wiki/BFGS_method
[47] W. W. Yu, L. Qu, W. Guo, and X. Peng, “Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals”, Chemistry of Materials, Vol.15, pp.2854-2860, 2003.
[48] I. Robel, M. Kuno, and P.V. Kamat, “Size-dependent electron injection from excited CdSe quantum dots into TiO2 nanoparticles”, Journal of the American Chemical Society, Vol.129, pp.4136-4137, 2007.
[49] F. Labat, P. Baranek, and C. Adamo, “Structural and electronic properties of selected rutile and anatase TiO2 surfaces: An ab initio investigation”, Journal of Chemical Theory and Computation, Vol.4, pp.341-352, 2008.
[50] M. Egashira, S. Kawasumi, S. Kagawa, and T. Seiyama “Temperature Programmed Desorption Study of Water Adsorbed on Metal Oxides. I. Anatase and Rutile”, Bulletin of the Chemical Society of Japan, Vol.51, pp.3144-3149, 1978.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top