|
[1] A. Manz, N. Graber, H. M. Widmer, “Micro total analytical system,” Sensors and Actuators B, pp. 244-248, 1990. [2] D. J. Laser and J. G. Santiago, “A Review of Micropumps”, J. Micromech. Microeng., vol. 14, no. 6, pp. R35-R64, 2004. [3] Kwang W Oh and Chong H Ahn, "A review of microvalves," J. Micromech. Microeng., vol. 16, no 5 pp. R13-R39, 2006. [4] T. Thorsen, S. J. Maerkl, S. R. Quake, “Microfluidic large-scale integration,” Science, 298, pp.580-584, 2002. [5] Michael H. Tooley. “Electronic circuits: fundamentals and applications”, Newnes, pp. 77–78. ISBN 9780750669238, 2006. [6] E. P. Eernisse, R. W. Ward, and R. B. Wiggins, "Survey of Quartz Bulk Resonator Sensor Technologies," IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, vol. 35, pp.323-330, 1988. [7] M.B. Pisani, P. Kao, and S. Tadigadapa, “Bulk Acoustic Wave Resonators For Infrared Detection Applications”, Transducers, W3P.053-057 [8] W. J. Tanski, “Surface acoustic wave resonators on quartz”, IEEE Trans. Sonics Ultrason., vol. SU-26, no. 2, pp. 93-104, March 1979. [9] M. Hikita, T. Tabuchi, H. Kojima, A. Sumioka, A.Nakagoshi, Y. Kinoshita, “High performance SAW filters with several new technologies for cellular radio”, IEEE Ultrason. Symp. Proc., pp. 82-92, 1984 [10] Ilaria Mannelli, Maria Minunni, Sara Tombelli, Marco Mascini, “Quartz crystal microbalance (QCM) affinity biosensor for genetically modified organisms (GMOs) detection”, Biosensors and Bioelectronics 18, pp. 129–140, 2003. [11] Michael Liss, Birgit Petersen, Hans Wolf, and Elke Prohaska, “An aptamer-based quartz crystal protein biosensor”, Analytical chemistry, 74(17):4488-95, 2002. [12] T. Okamoto, T. Suzuki, N. Yamamoto, “Microarrary fabrication with covalent attachment of DNA using bubble jet technology,” Nature Biotechnology, pp. 438-441, 2000. [13] L. Cao, S. Mantell, and D. Polla, “Design and simulation of an implantable medical drug delivery system using microelectromechanical systems technology,” Sensors and Actuators A, vol. 94, pp. 117-125, 2001. [14] Ling-Sheng Jang and Yung-Chiang Yu, “Peristaltic micropump system with piezoelectric actuators”, Microsystem Technologies, vol. 14, no. 2, pp. 241-248, 2008. [15] S. Santra, P. Holloway, and C. D. Batich, “Fabrication and testing of a magnetically actuated micropump,” Sensors and Actuators B, vol. 87, pp. 358-364, 2002. [16] O. C. Jeong and S. S. Yang, “Fabrication and test of a thermopneumatic micropump with a corrugated P+ diaphragm,” Sensors and Actuators A, vol. 83, pp. 249-255, 2000. [17] O. Francais and I. Dufour, “Dynamic simulation of an electrostatic micropump with pull-in and hysteresis phenomena,” Sensors and Actuators A, vol. 70, pp. 56-60, 1998. [18] A. D. Stroock, M. Weck, D. T. Chiu, W. T. S. Huck, P. J. A. Kenis, R. F. Ismagilov, and G. M. Whitesides, “Patterning electro-osmotic flow with patterned surface charge,” Phys. Rev. Lett. , vol. 84, pp. 3314-3317, 2000. [19] A. Manz, C. S. Effenhauser, N. Burggraf, D. J. Harrison, K. Seiler, and K. Fluri, “Electroosmotic pumping and. electrophoretic separations for miniaturized chemical analysis systems,” J. Micromech. Microeng., vol. 4, pp. 257-265, 1994 [20] A. Richter, A. Plettner, K. A. Hofmann, and H. Sandmaier, “A micromachined electrohydrodynamic (EHD) pump,” Sensors and Actuators A, vol. 29, no. 2, pp. 159-168, 1991. [21] T. K. Jun and C. J. Kim, "Valveless Pumping using Traversing Vapor Bubbles in Microchannels,” J. Applied Physics, vol. 83, pp. 5658-5664, 1998. [22] J. H. Tsai and L. Lin, “A Thermal-Bubble-Actuated Micronozzle-Diffuser Pump”, J. of Microelectromechanical Systems, vol. 11, pp.665-671, 2002. [23] X. Geng, H. Yuan, H. N. Oguz and A. Prosperetti, “Bubble-based micropump for electrically conducting liquids,” J. Micromech. Microeng., vol. 11, pp. 270-276, 2001. [24] Z. Yin and A. Prosperetti, “A microfluidic ‘blinking bubble’ pump,” J. Micromech. Microeng., vol.15, pp. 643-651, 2005. [25] J. H. Tsai, L. W. Lin, “Transient Thermal Bubble Formation on Polysilicon Micro-Resisters,” J. of Heat Transfer, vol. 124, no. 2, pp. 375-382, 2002. [26] D. A. Ateya, A. A. Shah, and S. Z. Hua, “An electrolytically actuated micropump,” Rev. Sci. Instrum. , vol. 75, pp. 915-920, 2004. [27] D. S. Meng and C. J. Kim, “Micropumping by Directional Growth and Hydrophobic Venting of Bubbles,” IEEE Micro Electro Mechanical Systems Workshop (MEM’05), pp. 423-426, 2005. [28] Bohm, H. Anthony. P. Davey, MR, Briarty, LG, Power, 18, Lowe, KC, Benes, E, and Grosch L M, “Viability of plant cell suspensions exposed to homogeneous ultrasonic fields of different energy density and wave type”, Ultrasonics 38 (l-8), pp. 629-632, 2000. [29] Wang, ZW, Grabenstetrer, P, Feke, DL, and Belovich, JM, “Retention and viability characteristics of mammalian cells in an acoustically driven polymer mesh”, Biotechnology Progress 20 (1), pp. 384-387, 2004. [30] Gherardini, L, Cousins, CM, Hawkes, JJ, Spengler, J, Radel, S, Lawler, H, Devcic-Kuhar, B, and Groschl, M, “A new immobilization method to arrange particles in a gel matrix by ultrasound standing waves”, Ultrasound in Medicine and Biology 31 (2), pp. 261-272, 2005. [31] Hultstrom, J, Manneberg, O, Dopf, K, Hertz, HM, Brismar, H, and Wiklund, M, “Proliferation and viability of adherent cells manipulated by standing-wave ultrasound in a microfluidic chip”, Ultrasound Medicine and Biology 33, pp.175-181, 2006. [32] Fu Y.Q., Du X.Y., Luo J.K., Flewitt A.J., Milne W.I., Lee D.S., Park N.M., Maeng S., Kim S.H., Choi Y.J., Park J., “SAW Streaming in ZnO Surface Acoustic Wave Micromixer and Micropump”, IEEE Sensors, pp. 478-483 , 2007. [33] N.T. Nguyen, R.M. White, “Design and optimization of an ultrasonic flexural plate wave micropump using numerical simulation”, Sensors and Actuators 77, pp.229–236, 1999. [34] Salvatore Girardo, Marco Cecchini, Fabio Beltram, Roberto Cingolani, Dario Pisignano, “Polydimethylsiloxane–LiNbO3 surface acoustic wave micropump devices for fluid control into microchannels”, Lab Chip, (9), pp. 1557-1563, 2008. [35] Miyazaki S., Kawai T., Araragi M., "A piezo-electric pump driven by a flexural progressive wave", IEEE Micro Electro Mechanical Systems, MEMS '91, Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots, pp. 283-288, 1991. [36] A. Kundt, O. Lehmann, “Longitudinal vibrations and acoustic figures in cylindrical columns of liquids”, Ann. Phys. Chem., 1, 153, 1874. [37] Martyn Hill, Nicholas R. Harris, “Microfluidic Technologies for Miniaturized Analysis Systems”, Springer US, pp. 357-392, 2007. [38] Larisa A. Kuznetsova and W. Terence Coakley, “Microparticle concentration in short path length ultrasonic resonators: Roles of radiation pressure and acoustic streaming”, J. Acoustical Society of America, Volume 116, Issue 4, pp. 1956-1966, 2004. [39] J. E. Piercy and J. Lamb, “Acoustic Streaming in Liquids”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 226, No. 1164, pp. 43-50, 1954. [40] Hurlbut Cornelius S., Klein Cornelis, “Manual of Mineralogy (20 ed.)” ISBN 0-471-80580-7, 1985.
|