(44.192.112.123) 您好!臺灣時間:2021/03/08 23:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊舒婷
研究生(外文):Yang, Shu-Ting
論文名稱:外加磁場下磁流體晶格排列之研究
論文名稱(外文):Study of the arrangements of magnetic fluids under external magnetic fields
指導教授:衛榮漢
指導教授(外文):Wei, Zung-Hang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:動力機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:74
中文關鍵詞:磁液滴磁膜
外文關鍵詞:Magnetic DropletMagnetic Thin Film
相關次數:
  • 被引用被引用:1
  • 點閱點閱:155
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主旨為研究在外加磁場下磁液滴排列於磁膜上之探討。在外加磁場下,當磁液滴外包覆一層環境油時,此介質將影響磁液滴的表面張力平衡,使液滴因磁場作用而分散形成微米尺度之次液滴,若磁場持續增強產生的分散數愈多,相反的,液滴尺度將會愈小。
本研究分為兩部分,其ㄧ是針對不同直徑、圓心間距的圓形磁膜,依二維六角形晶格方式排列,分析磁液滴於磁膜上之定位效果,實驗結果顯示利用不同的外加磁場作用下,磁液滴皆可定位於不同參數陣列的磁膜上,並且有三種不同的狀態結果;其二為磁膜錯位的排列變化,包含二維六角形晶格進行旋轉45°、間距放大1.5倍與錯位0.5倍間距之三種陣列差異,結果發現旋轉45°與錯位0.5倍間距的磁膜仍可對磁液滴有其定位上之影響,反觀,間距放大1.5倍的晶格變化未有其效果存在。實驗同時,利用FFT圖與計算晶格常數來分析磁液滴是否有規則的週期性排列。

摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
1-3 研究方法 4
第二章 基礎理論及文獻回顧 6
2-1 磁流體 6
2-1-1 磁流體之構造與組成 6
2-1-2 磁流體之製造方法 7
2-1-3 磁流體之應用 8
2-2 磁液滴界面不穩定現象之形態 9
2-3 磁膜 12
2-4 晶格 15
第三章 實驗設計與方法 29
3-1 實驗樣本設計與製作 29
3-1-1 分散程度測試 29
3-1-2 錯位磁膜實驗 30
3-2 樣本製作 30
3-3 實驗架構 31
第四章 結果與分析 37
4-1 液滴分散與定位 37
4-1-1 磁液滴於空白玻璃上之分散情況 37
4-1-2 磁液滴於各種不同參數的圓形磁膜上之分散情況 38
4-1-3 分析與討論 42
4-2 錯位 43
4-2-1 磁液滴於旋轉45°磁膜上之定位情況 44
4-2-2 磁液滴於間距放大1.5倍磁膜上之定位情況 44
4-2-3 磁液滴於間距錯位0.5倍磁膜上之定位情況 45
4-2-4 間距4行與8行之綜合比較 45
第五章 結論 69
5-1 結論 69
5-2 未來展望 70
參考文獻 72


[1] National Science Foundation report: Nanostructure Science and Technology: R&D Status and Trends in Nanoparticles, Nanostructured Materials, and Nanodevices, 1999.
[2] 黃忠良, 磁性流體理論應用, 1989, 復漢出版社
[3] K. Raj et al., “Advance in ferrofluid technology,” Journal of Magmetic Materials, 1995, 149, 174-180.
[4] R. E. Rosensweig, “Magnetic fluids,” Science American, 1982, 247, 124-132.
[5] U.S. Pat. No. 3215572 : S.S. Papell, Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles, 1965.
[6] U.S. Pat. No. 3917538 : R. E. Rosensweig, Ferrofluid compositions and process of making same, 1975.
[7] R. E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, 1985.
[8] B. M. Berkovsky et al., Magnetic fluids: Engineering Applications, Oxford University Press, 1993.
[9] C.Y. Chen et al., “Ordered microdroplet formations of thin ferrofluid layer breakups,” Physics of fluids, 2010, 22, 1-6.
[10] R. E. Rosensweig, “Theory for stabilization of magnetic colloid in liquid metal,” Journal of Magnetism and Magnetic Materials, 1999, 201, 1-6.
[11] C. Y. Hong et al., “Ordered structures in Fe3O4 kerosene-based ferrofluids,” Journal of Applied Physics, 1997, 81, 4275-4277.
[12] C. Y. Hong et al., “Parameter dependence of two-dimensional ordered structures in magnetic fluid thin films subjected to perpendicular fields,” Magnitnaya Gidrodimaika, 1999, 35, 364-370.
[13] C. Y. Hong et al., “Evidence of multiple states of ordered structures and a phase transition in magnetic fluid films under perpendicular magnetic fields,” Applied Physics Letters, 1999, 75, 2196-2198.
[14] H. E. Horng et al., “Evidence of birefringence due to two phases in the magnetic fluid film,” Magnitnaya Gidrodinamika, 2000, 36, 39-46.
[15] H. E. Horng et al., “Magnetic field dependence of Cotton-Mouton rotation for magnetic fluid films,” Journal of Magnetism and Magnetic Materials, 1999, 201, 215-217.
[16] A. A. Rousan et al., “On the concentration dependence of light transmission in magnetic fluids,” IEEE Transaction on Magnetics, 1988, 24, 1653-1655.
[17] S. Y. Yang et al., “Origin of field-dependent optical transmission of magnetic fluid films,” Applied Physics Letters, 2001, 79, 2372-2374.
[18] S. A. Rovers et al., “Characterization and magnetic heating of commercial superparamagnetic iron oxide nanoparticles,” Journal of Physical Chemistry A, 2009, 113, 14638-14643.
[19] M. D. Cowley et al., “The interfacial stability of a ferromagnetic fluid,” Journal of Fluid Mechanics, 1967, 30, 671-673.
[20] L. Romankiw et al., “Liquid magnetic bubbles,” IEEE Transactions on Magnetics, 1975, 11, 25-28.
[21] C. Y. Chen et al., “Breakup of thin films of micro magnetic drops in perpendicular fields,” Journal of Magnetism and Magnetic Materials, 2006, 305, 440-447.
[22] M. Zahn, “Magnetic fluids and nanoparticle applications to nanotechnology,” Journal of Nanoparticle Research, 2001, 3, 73-78.
[23] R. Richter et al., “Two-dimensional solitons on the surface of magnetic fluids,” Physical Review Letters‚ 2005, 94‚ 1-4.
[24] C. Gollwitzer et al., “The surface topography of a magnetic fluid a quantitative comparison between experiment and numerical simulation”, Journal of Fluid Mechanics, 2007, 571, 455-474.
[25] R. M. Oliveira and J. A. Miranda, “Ferrofluid patterns in a radial magnetic field: Linear stability, nonlinear dynamics, and exact solutions,” Physics Review E, 2008, 77, 1-11.
[26] http://www.eecs.mit.edu/grad/area4/subjects.html
[27] A. J. Dickstein et al., “Labyrinthine pattern formation in magnetic fluids,” Science, 1993, 261, 10-12.
[28] C. Y. Wen et al., “Experimental studies of labyrinthine instabilities of miscible ferrofluids in a Hele-Shaw Cell,” Physics of Fluids, 2007, 19, 1-8.
[29] C. Y. Chen et al., “A hybrid ferrohydrodynamic instability: coexisting peak and labyrinthine patterns,” Physics Review E, 2008, 77, 1-7.
[30] S. Benka, “Physics update: Peaks and labyrinths in a magnetic fluid,” Physics Today, 2008, 61, 20.
[31] 廖紹彬, 鐵磁學, 1987, 科學出版社
[32] K. Gunnarsson et al., “Programmable motion and separation of single magnetic particles on patterned magnetic surfaces,” Advanced Materials, 2005, 17, 1730-1734.
[33] Z. H. Wei et al., “Magnetic fluid micromixer with tapered magnets,” Journal of Applied Physics, 2009, 105, 1-3.
[34] Z. H. Wei et al., “Magnetic force switches for magnetic fluid micromixing,” Japanese Journal of Applied Physics, 2010, 49, 1-3.
[35] Z. H. Wei et al., “Magnetic particle separation using controllable magnetic force switches,” Journal of Magnetism and Magnetic Materials, 2010, 322, 19-24.
[36] 郝士明, 漫談晶體結構學, 1997, 國家圖書館
[37] 許樹恩、吳泰伯, X光繞射原理與材料結構分析, 1993, 中國材料科學學會
[38] 楊武智, 影像處理與辨認, 1994, 全華科技圖書
[39] 陸中光, “垂直磁場下磁流體薄膜晶格之有序分析,” 碩士論文, 國立中山大學, 2002.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔