[1] C. T. Laurencin, T. Gerhart, P. Witschger, R. Satcher, A. Domb, A. E.
Rosenberg, P. Hanff, L. Edsberg, W. Hayes, and R. Langer, "Bioerodible
Polyanhydrides for Antibiotic Drug Delivery: In Vivo Osteornyelitis Treatment
in a Rat Model System ", Journal of Orthopaedic Research, vol.11,pp.256-262,
1993.
[2] H. Wahlig, E. Dingeldein, R. Bergmann, K. Reuss,"The release of gentamicin
from polymethylmethacrylate beads. An experimental and pharmacokinetic
study ", Journal of Bone and Joint Surgery - Series B, vol.60, pp.270-275, 1978.
[3] D. Arcos, C.V. Ragel, M. Vallet-Regm, "Bioactivity in glass/PMMA composites
used as drug delivery system", Biomaterials, vol.22, pp. 701-708, 2001.
[4] G. Gregoriadis, "Engineering liposomes for drug delivery: progress and
problems",Trends in Biotechnology, vol.13, pp.527–537, 1995.
[5] G. S. Kwon, K. Kataoka, "Block copolymer micelles as long-circulating drug
vehicles ",Advanced Drug Delivery Reviews, vol.16, pp.295–309, 1995.
[6] C. X. Song, V. Labhasetwar, H. Murphy, X. Qu, W. R. Humphrey, R. J.
Shebuski, R. J. Levy, "Formulation and characterization of biodegradable
nanoparticles for intravascular local drug delivery", Journal of Controlled
Release, vol.43, pp.197–212, 1997.
[7] K. Avgoustakis, A. Beletsi, Z. Panagi, P. Klepetsanis, A. G. Karydas, D. S.
Ithakissios, "PLGA–mPEG nanoparticles of cisplatin: in vitro nanoparticle
degradation, in vitro drug release and in vivo drug residence in blood properties",
Journal of Controlled Release, vol.79, pp.123–135, 2002.
[8] Y. Nishioka, H. Yoshino, "Lymphatic targeting with nanoparticulate system",
Advanced Drug Delivery Reviews, vol.47, pp.55–64, 2001.
[9] A. Manz, N. Gtaber, H. M. Widmer, " Miniaturized total chemical analysis
systems: a novel concept for chemical sensing ", Sensors and Actuators B,
Chemical, vol.1, pp.244-248, 1990.
[10] K. Seiler, D. J. Harrison, A. Manz,"Planar glass chips for capillary
electrophoresis: repetitive sample injection, quantitation, and separation
efficiency", Analytical Chemistry, vol.65, pp.1481-1488, 1993.
[11] R. Karnik, F. Gu, P. Basto, C. Cannizzaro, L. Dean, W. K. Manu, R. Lange,
O. C. Farokhzad, " Microfluidic platform for controlled synthesis of polymeric
nanoparticles ", Nano Letters, vol.8, pp.2906–2912, 2008.
[12] J. S. Hong, S. M. Stavis, S. H. D. Lacerda, L. E. Locascio, S. R. Raghavan,
M. Gaitan, " Microfluidic directed self-assembly of liposome-hydrogel hybrid
nanoparticles ", Langmuir, vol.26, pp.11581–11588, 2010.
[13] A. E. HERR, A. V. HATCH, W. V. GIANNOBILE, D. J. THROCKMORTON,
H. M. TRAN, J. S. BRENNAN, A. K. SINGH, "Integrated Microfluidic
Platform for Oral Diagnostics", Annals of the New York Academy of Sciences,
vol.1098, pp.362-374, 2007.
[14] S. Senapati, A. R. Mahon, J. Gordon, C. Nowak, S. Sengupta, T. H. Q. Powell, J.
Feder, D. M. Lodge, H. C. Chang, "Rapid on-chip genetic detection microfluidic
platform for real world applications", Biomicrofluidics, vol.3,
pp.022407-1- 7, 2009.
[15] 楊正義、陳吉峰、葉怡均、陳正龍、陳家俊,金屬、半導體奈米晶體在生物
檢測及分析上的應用, 物理雙月刊, 第 23 卷,第 6 期,667-677 頁,2001 。
[16] L. C. Clark, C. Lyons, "Electrode system for continuous monitoring in
cardiovascular surgery", Annals of the New York Academy of Sciences, 29, 102.
1962.
[17] P. Bergveld, “Development of an ion-sensitive solid-state device for
neurophysiological measurements”, IEEE Transactions on Biomedical
Engineering, Vol. 17, pp.70-71, 1970.
[18] M. D. P. T. Sotomayor, A. A. Tanaka and L. T. Kubota, “Development of an
enzymeless biosensor for the determination of phenolic compounds”, Analytica
Chimica Acta, Vol. 455, pp. 215-223, 2002.
[19] W. M. Yeh and K. C. Ho, “Amperometric morphine sensing using a molecularly
imprinted polymer-modified electrode”, Analytica Chimica Acta, Vol. 542, pp.
76-82, 2005.
[20] X. Pang, D. He, S. Luo and Q. Cai, “An amperometric glucose biosensor
fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube
arrays composite”, Sensors and Actuators B, Chemical, Vol.137, pp.134–138,
2009.
[21] 吳浩青、李永舫,電化學動力學,初版,科技圖書股份有限公司,2001。
[22] D. G. Sanderson, L. B. Anderson, "Filar Electrodes: Steady-State Currents and
Spectroelectrochemistry at Twin Interdigitated Electrodes ", Analytical
Chemistry, vol.57, pp.2388–2393, 1985.
[23] C. E. Chidsey, B. J. Feldman, C. Lundgren, R. W. Murray,
"Micrometer-Spaced Platinum Interdigitated Array Electrode: Fabrication,
Theory, and Initial Use", Analytical Chemistry, vol.58, pp.601–607, 1986.
[24] J. S. Shim, M. J. Rust, C. H. Ahn, "Interdigitated Array Electrodes with Nano
Gaps Using Optical Lithography and Controlled Undercut Method",
Nanotechnology, 2008. NANO '08. 8th IEEE Conference on, pp.851–854, 2008.
[25] M. Morita, O. Niwa, T. Horiuchi, "Interdigitated array microelectrodes as
electrochemical sensors", Electrochimica Acta, vol. 42, pp.3177–3183, 1997.
[26] Z. Liu, J. Li, T. You, X. Yang, E. Wang, "Voltammetric Study of Vitamin K3
at Interdigitated Array Microelectrodes", Electroanalysis, vol.11,pp.53–58, 1999.
[27] X. Zhu, J. W. Choi, and C. H. Ahn, "A New Dynamic Electrochemical
Transduction Mechanism for Interdigitated Array Microelectrodes," Lab Chip,
vol.4, pp.581–587, 2004.
[28] A. J. Bard, L. R. Faulkner, Electrochemical method :fundamentals and
applications, 2nd ed. , New York , John Wiley & Sons, 2001.
[29] P. A. Fiorito, V. R. Goncales, E. A. Ponzio, S. I. C. de Torresi, "Synthesis,
characterization and immobilization of Prussian blue nanoparticles. A potential
tool for biosensing devices", Chemical Communications, pp.366-368, 2005.
[30] S. Cherevko, C. H. Chung, "Gold nanowire array electrode for non-enzymatic
voltammetric and amperometric glucose detection", Sensors and Actuators B,
Chemical, vol.142, pp.216-223, 2009.
[31] X. Zhang, Y. Wu, b Y. Tu, S. Liu, "A reusable electrochemical immunosensor
for carcinoembryonic antigen via molecular recognition of glycoprotein antibody
by phenylboronic acid self-assembly layer on gold", Analyst, vol.133,
pp.485-492, 2008.
[32] S. Choi, J. Chae, "A regenerative biosensing surface in microfluidics using
electrochemical desorption of short-chain self-assembled monolayer", Microfiuid
Nanofluid, vol.7, pp.819–827, 2009.
[33] G. P. Rao, C. Lu, F. Su, "Sorption of divalent metal ions from aqueous solution
by carbon nanotubes: A review", Separation and Purification Technology, vol.58,
pp.224–231, 2007.
[34] W Mokwa, "MEMS Technologies for Epiretinal Stimulation of The Retina",
Journal of Micromechanics and Microengineering, vol.14, pp. S12–S16, 2004.
[35] M. K. Gheith, V. A. Sinani, J. P. Wicksted, R. L. Matts, N. A. Kotov,
"Single-Walled Carbon Nanotube Polyelectrolyte Multilayers and Freestanding
Films as a Biocompatible Platform for Neuroprosthetic Implants", Advanced
Materials, vol.17, pp.2663-2670, 2005.
[36] S. Iijima, "Helical microtubules of graphitic carbon", Nature, vol.354, pp.56–58,
1991.
[37] Csilla MIK?? synthesis, characterization and macroscopic manipulation of
carbon nanotubes, Ph.D Dissertation, Lausanne, ?聃OLE POLYTECHNIQUE
F?聈?舑ALE DE LAUSANNE, 2005.
[38] R. S. Ruoff, D. C. Lorents, "Mechanical and thermal properties of carbon
nanotubes", Carbon, vol.33, pp.925–930 , 1995.
[39] S. Berber, Y. K. kwon, D. Tomanek, " Unusually High Thermal Conductivity of
Carbon Nanotubes ", Physcal Review Letters, vol.84,pp. 4613–4616, 2000.
[40] S. Bandow, "Radial Thermal Expansion of Purified Multiwall Carbon Nanotubes
Measured by X-ray Diffraction ", Japanese Journal of Applied Physics, vol. 36,
pp. L1403–L1405, 1997
[41] A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, M. M. J. Treacy, "
Young’s modulus of single-walled nanotubes ", Physcal Review B, vol.58, pp.
14013–14019, 1998.
[42] M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, R. S. Ruoff, "
Strength and breaking mechanism of multiwalled carbon nanotubes under tensile
load ", Science, vol. 287, pp. 637–640, 2000.
[43] P.J. Britto, K.S.V. Santhanam and P.M. Ajayan, “Carbon nanotube electrode for
oxidation of dopamine”, Bioelectrochemistry and Bioenergetics, Vol.41,
pp.121-125, 1996.
[44] J. N. Wohlstadter , J. L. Wilbur, G. B. Sigal, H. A. Biebuyck, M. A. Billadeau, L.
Dong, A. B. Fischer, S. R. Gudibande, S. H. Jameison, J. H. Kenten, J. Leginus, J. K. Leland, R. J. Massey, S. J. Wohlstadter, “Carbon Nanotube-Based
Biosensor”, Advanced Materials, Vol.15, pp.1184-1187, 2003.
[45] J. Li, H. T. Ng, A. Cassell, W. Fan, H. Chen, Q. Ye, J. Koehne, J. Han and M.
Meyyappan, “Carbon Nanotube Nanoelectrode Array for Ultrasensitive DNA
Detection”, Nano Letters, Vol.3, pp,597-602, 2003.
[46] S. Hrapovic, Y. Liu, K. B. Male, and J. H. T. Luong, “Electrochemical
Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes”,
Analytical Chemistry, Vol.76, pp.1083-1088, 2004.
[47] Y. Lin, F. Lu, J. Wang, ” Disposable Carbon Nanotube Modified Screen-Printed
Biosensor for Amperometric Detection of Organophosphorus Pesticides and
Nerve Agents”, Electroanalysis, Vol.16, pp.145-149, 2004.
[48] M. D. Rubianes and G. A. Rivas, “Enzymatic Biosensors Based on Carbon
Nanotubes Paste Electrodes”, Electroanalysis, Vol.17, pp.73-78, 2004.
[49] J. Oh, S. Yoo, Y. W. Chang , K. Lim and K. H. Yoo,” Carbon nanotube-based
biosensor for detection hepatitis B”, Current Applied Physics, Vol.9, pp.229-231,
2009.
[50] J. Y. Choi, K. Seo, S. R. Cho, J. R. Oh, S. H. Kahng, J. Park, "Screen-printed
anodic stripping voltammetric sensor containing HgO for heavy metal analysis",
Analytica Chimica Acta, vol.443, pp.241–247, 2001.
[51] J. B. Cooper, S. Pang, S. Albin, J. Zheng, R. M. Johnson, "Fabrication of
Boron-Doped CVD Diamond Microelectrodes", Analytical Chemistry, vol.70,
pp.464–467, 1998.
[52] Z. Zou, A. Jang, E. MacKnight, P. M. Wu, J. Do, P. L. Bishop, C. H. Ahn,
"Environmentally–Friendly Disposable Sensors with Microfabricated On-Chip
Planar Bismuth Electrode for in situe Heavy Metal Ions Measurement, " Sensors
and Actuators B, Chemical, vol.134, pp. 18–24, 2008.
[53] H. Yang, S. W. Kang, " Improvement of thickness uniformity in nickel
electroforming for the LIGA process ", International Journal of Machine Tools &
Manufacture, vol.40, pp.1065–1072, 2000.
[54] J. Kong, A. M. Cassell and H. Dai, "Chemical vapor deposition of methane for
single-walled carbon nanotubes", Chemical Physics Letters, Vol. 292, pp.
567-574, 1998.
[55] P. Qi, O. Vermesh, M. Grecu, A. Javey, Q. Wang, and H. Dai, " Toward Large
Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly
Sensitive and Selective Molecular Detection", Nano Letters, Vol.3, pp.347–351,
2003.
[56] X. Pang, D. He, S. Luo, Q. Cai, "An amperometric glucose biosensor fabricated
with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays
composite", Sensors and Actuators B, Vol.137, pp.134–138, 2009
[57] C. L. Choong, J. S. Bendall, W. I. Milne, "Carbon nanotube array: A new MIP
platform", Biosensors and Bioelectronics, Vol.25, pp.652-656, 2009.
[58] F. Berti, L. Lozzi, I. Palchetti, S. Santucci and G. Marrazza, "Aligned carbon
nanotube thin films for DNA electrochemical sensing", Electrochimica Acta,
Vol.54, pp.5035-5041, 2009
[59] C. Karuwan, D. Phokharatkul, A. Wisitsoraat, A. Tuantranont, "Miniturized
electrochemical cell system on chip with carbon nanotube based electrodes for
miltiple chemical detections using differential pulsed voltammetry", Proceedings
of the 13th International Conference on Miniaturized Systems for
Chemistry and Life Sciences (micro-TAS 2009), Jeju, Koera, November 1-5,
2009.
[60] K. Yamamoto, S. Akita, Y. Nakayama, "Orientation and purification of carbon
nanotubes using ac electrophoresis", Journal of Physics D, Applied Physics ,
vol.31, pp.L34-L36, 1998.
[61] M. S. Kumar, S. H. Lee, T. Y. Kim, T. H. Kim, S. M. Song, J. W. Yang, K. S.
Nahm, E. K. Suh, "DC electric field assisted alignment of carbon nanotubes on
metal electrodes", Solid-State Electronics, vol.47, pp.2075–2080, 2003.
[62] A. R. Boccaccini, J. Cho, J. A. Roether, B. J.C. Thomas, E. J. Minay, M. S. P.
Shaffer, "Electrophoretic deposition of carbon nanotubes", Carbon, vol.44, pp.
3149–3160, 2006.
[63] S. Sivaramakrishnan, R. Rajamani, C. S. Smith, K. A. McGee, K. R. Mann, N.
Yamashit, "Carbon nanotube-coated surface acoustic wave sensor for carbon
dioxide sensing", Sensors and Actuators B, Chemical, vol.132, pp.296-304,
2008.
[64] T. Gan, K. Li, K. Wu, "Multi-wall carbon nanotube-based electrochemical
sensor for sensitive determination of Sudan I", Sensors and Actuators B,
Chemical, vol.132, pp.134–139, 2008.
[65] Y. Lu, C. Partridge, M. Meyyappan, J. Li, "A carbon nanotube sensor array for
sensitive gas discrimination using principal component analysis", Journal of
Electroanalytical Chemistry, vol.593, pp.105-110, 2006.
[66] 廖欣誼,兩種不同速效劑量下 Teicoplanin 血中濃度的比較,碩士論文,台北,國立台灣大學醫學系,2007
[67] S. Palaharn, T. Charoenraks, N. Wangfuengkanagul, K. Grudpan, O. Chailapakul,
"Flow injection analysis of tetracycline in pharmaceutical formulation with
pulsed amperometric detection", Analytica Chimica Acta, vol.499, pp. 191–197,
2003.
[68] N. Mochizuki, K. Ohno, T. Shimamura, Hiroyuki Furukawa, Satoru Todo,
Satoshi Kishino, "Quantitative determination of individual teicoplanin
components in human plasma and cerebrospinal fluid by high-performance
liquid chromatography with electrochemical detection", Journal of
Chromatography B, vol.847, pp.78–81, 2007.
[69] B. Jeong, Y. H. Bae, D. S. Lee, S. W. Kim, "Biodegradable block copolymers as
injectable drug-delivery systems", Nature, vol.388, pp.860–862, 1997.
[70] K. T. Peng, C. F. Chen, I. M. Chu, Y. M. Li, W. H. Hsu, R. W. W. Hsu, P. J.
Chang, "Treatment of osteomyelitis with teicoplanin-encapsulated biodegradable
thermosensitive hydrogel nanoparticles", Biomaterials, vol.31, pp.5227-5236,
2010.
[71] X. L. Luo, J. J. Xu, Y. Du, H. Y. Chen, "A glucose biosensor based on
chitosan–glucose oxidase–gold nanoparticles biocomposite formed by one-step
electrodeposition", Analytical Biochemistry, vol.334, pp.284–289, 2004.
[72] F. Mizutani, S.Yabuki, Y. Sato, "Voltammetric enzyme sensor for urea using
mercaptohydroquinone-modified gold electrode as the base transducer
",Biosensors & Bioelectronics, vol.12, pp.321–328, 1997.
[73] B. K. Jena, C. R. Raj, "Amperometric L-Lactate Biosensor Based on Gold
Nanoparticles", Electroanalysis, vol.19, pp.816–822, 2007.
[74] H. Ju, D. Zhou, Y. Xiao, and H. Chen, "Amperometric Biosensor for Glucose
Based on a Nanometer-Sized Microband Gold Electrode Coimmobilized with Glucose Oxidase and Poly(o-phenylenediamide)", Electroanalysis, vol.10,
pp.541–545, 1998.
[75] C. Li, J. Han, C. H. Ahn, "Flexible biosensors on spirally rolled micro tube for
cardiovascular in vivo monitoring", Biosensors and Bioelectronics, vol.22,
pp.1988–1993, 2007.
[76] F. Salam, I. E. Tothill, "Detection of Salmonella typhimurium using an
electrochemical immunosensor",Biosensors and Bioelectronics, vol.24,
pp.2630–2636, 2009