|
[1] T. Aishima. Aroma discrimination by pattern recognition analysis of re-sponses from semiconductor gas sensor arrays. In Journal of Agricultural and Food Chemistry, pages 752–756. ACS, 1991. [2] L. D. and N. Ben-Arie. Olfactory receptors. pages 668–674. Current Biology, 1993. [3] B. Efron. Bootstrap methods: Another look at the jackknife. In The Annals of Statistics, pages 1–26, 1979. [4] B. Efron. Better bootstrap confidence intervals. In J. Amer. Statist. Assoc., 1987. [5] A. F and P. C. Fast outlier detection in high dimensional spaces. In Pro-ceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery, pages 15–26. ACM, 2002. [6] D. Hawkins. Identification of outliers. London, 1980. Chapman and Hall. [7] D. S. B. Jr., S. L. Rose, J. W. Grate, and H. Wohltjen. Correlationof surface acoustic wave device coating responses with solubility properties and chemical structure using pattern recognition. In Analytical Chemistry, pages 3058–3066, 1986. [8] E. M. Knorr and R. T. Ng. Finding intensional knowledge of distance-based outliers. In Proceedings of 25th International Conference on Very Large Data Bases, pages 211–222, Edinburgh, Scotland, UK, 1999. [9] Y.-S. Lin. Methods of odor analysis for electronic nose systems. MS Thesis, National Tsing Hua University Institutional Repository, 2009. [10] A. M. Martinez and A. C. Kak. Pca versus lda. In IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 228–233, 2001. [11] T. C. Pearce, J. W. Gardner, S. Friel, P. N. Bartlett, and N. Blair. Electronic nose for monitoring the flavour of beers. In Analyst, pages 371–377, 1986. [12] R. Polikar, R. Shinar, V. Honavar, L. Udpa, and M. Porter. Detection and identification of odorants using an electronic nose. In Proceedings of the IEEE Conference on Acoustics, Speech, and Signal Processing (ICASSP), Salt Lake City, Utah, USA, 2001. [13] R. R. Reed. Signaling pathways in odorant detection. pages 205–209. Neuron, 1992. [14] R. S., R. R., and S. K. Efficient algorithms for mining outliers from large datasets. In Proceedings of the international conference on management of data(SIGMOD), pages 427–438. ACM SIGMOD, 2000. [15] L. I. Smith. A tutorial on principal components analysis. 2002.
|