跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/10 15:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李偉齊
研究生(外文):Lee, Chi-Wei
論文名稱:氮化鎵及氮化銦鎵金氧半電晶體製作
論文名稱(外文):Fabrication of U-GaN and InGaN MOSFETs
指導教授:黃智方
指導教授(外文):Huang, Chih-Fang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:中文
論文頁數:87
中文關鍵詞:氮化鎵氮化銦鎵活化金氧半電晶體
外文關鍵詞:GaNInGaNactivationMOSFETs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:26
  • 收藏至我的研究室書目清單書目收藏:0
此篇論文研究使用矽離子當作汲、源極摻雜的氮化鎵金氧半電晶體。為了保持在離子佈植時的活化率同時避免表面氮的跑掉,我們發現最佳的活化製程為在氮氣中使用快速熱退火於1200度5分鐘。此時所量測出最低的片電阻為62Ω/ohm。另一項研究為使用原子氣相沉積,沉積氧化鋁當作閘極介電層,為避免氧化鋁在高溫燒結時會有裂解,必須先做燒結後才能沉積閘極介電層。最後,當完成的元件經過混合氣體的燒結後可以有效改善氧化層-氮化鎵的界面,其最佳的導通電阻為24 Ω*cm以及電流密度大於10 mA/mm。
我們另外的研究為氮化銦鎵/氮化鎵材料,在研究中發現,即使活化溫度達到1100度,由於汲、源極仍然未完全活化,使得最大導通電流密度大約1mA/mm,這些元件存在著很大的汲極漏電流,乃為由基板漏電流造成。
This thesis investigates the fabrication of GaN MOSFETs utilizing Si as the implant species for the source and drain regions. In order to prevent nitrogen loss from the surface while keep ion implantation activation efficiency, we find the best annealing process is to perform RTA at 1200 ℃ for 5 minutes in N2 ambient. The measured sheet resistance is as low as 62Ω/ohm. We investigated the performance of ALD deposited Al2O3 as the gate dielectric. To prevent Al2O3 being recrystallized during high temperature annealing, the ohmic contacts are formed before gate oxide deposition. The devices are forming gas annealed to further improve the oxide-GaN interface. The best measured RON is 24 Ω*cm and the current density above 10 mA/mm.
We also studied MOSFETs using InGaN/GaN material system. It is found that even the activation temperature is as high as 1100 ℃, the ION(max) is only about 1mA/mm due to poor activation in the source and drain. These devices exhibit significant drain leakage current which is attributed to substrate leakage current.
目錄
摘要 I
中文摘要 I
英文摘要 II
致謝 III
目錄 IX
圖目錄 XIII
表目錄 XX
第一章 序論 1
1-1前言 1
1-2氮化鎵的材料特性 1
1-3研究動機與文獻回顧 2
1-4論文大綱 6
第二章 基本理論 11
2-1 MOS結構 11
2-1-1氧化層電荷分布 11
2-2 MOSFET特性 13
2-2-1臨界電壓(Threshold Voltage, VTH) 14
2-2-2轉導增益(Transconductance, gm)與場效遷移率 15
2-2-3次臨界擺幅(Subthreshold Swing, St) 16
2-2-4崩潰電壓(Breakdown Voltage ,BV) 16
2-2-5基板效應(Body-effect) 17
2-2-6通道調變效應(Channel Length Modulation) 17
2-2-7接觸電阻(Contact Resistance) 18
第三章 元件製程 21
3-1 MOSFET光罩設計 21
3-2元件製作 23
3-2-1 N型基板低溫離子佈植Al2O3為介電層無金屬燒結MOSFET 29
3-2-2 N型基板低溫離子佈植Al2O3為介電層有金屬燒結MOSFET 31
3-2-3 N型基板高溫離子佈植SiO2為介電層有金屬燒結MOSFET 35
3-2-4 N型基板高溫離子佈植Al2O3為介電層有金屬燒結MOSFET 41
3-2-5 InGaN ALD-Al2O3 MOSFET 46
第四章 元件量測分析與結果探討 51
4-1 ALD-Al2O3閘極氧化層低溫離子佈植無金屬燒結活化溫度1200 ℃基本電性分析 52
4-1-1 MOSFET ID-VDS電性分析 52
4-1-2 MOSFET ID-VGS電性分析 53
4-1-3導通電阻和接觸電阻分析 54
4-2 ALD-Al2O3為閘極氧化層低溫離子佈植金屬燒結並活化於1200 ℃基本電性分析 55
4-2-1 MOSFET ID-VDS電性分析 55
4-2-2 MOSFET ID-VGS電性分析 58
4-2-3導通電阻和接觸電阻分析 59
4-3 PECVD-SiO2為閘極氧化層高溫離子佈植金屬燒結並活化於1100 ℃基本電性分析 62
4-3-1 MOSFET ID-VDS電性分析 62
4-3-2 MOSFET ID-VGS電性分析 65
4-3-3導通電阻和接觸電阻分析 66
4-4 ALD-Al2O3為閘極氧化層高溫離子佈植金屬燒結並活化於1150 ℃基本電性分析 69
4-4-1 MOSFET ID-VDS電性分69
4-4-2 MOSFET ID-VGS電性分析 71
4-4-3導通電阻和接觸電阻分析 72
4-5綜合比較分析 74
4-5-1 PECVD-SiO2為閘極氧化層且活化於1100 ℃電晶體 77
4-5-2 ALD-Al2O3為閘極介電層且活化於1150 ℃電晶體 78
4-5-3 ALD-Al2O3為閘極介電層且活化於1200 ℃電晶體 80
4-6 InGaN MOSFET 82
第五章 總結論文,對未來之建議與改進方向 85
參考文獻 86
[1] F. Ren, M. Hong, S. N. G. Chu,,M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton and C. R. Abernathy,“Effect of temperature on Ga2O3(Gd2O3)/GaN metal–oxide–semiconductor field-effect transistors,” Applied Physics Letters, vol.73, NUMBER 26,PP.3893-3895,1998.
[2] J. C. ZolperR. J. Shul, and A. G. Baca, R. G. Wilson, S. J. Pearton, R. A. Stall, ” Ion-implanted GaN junction field effect transistor” Applied Physics Letters, vol. 68, No. 16 pp.2273-2275.
[3] Hyun Cho , K.P. Lee , B.P. Gila , C.R. Abernathy , S.J. Pearton, F. Ren, “Gate breakdown characteristics of MgO/GaN MOSFETs.” Solid-State Electronics, vol.47 pp. 1597–1600, 2003.
[4] K. Matocha, T.P. Chow, and R.J. Gutmann, ” High-Voltage Accumulation-Mode Lateral RESURF GaN MOSFETs on SiC Substrate” ISPSD April 14-17 ,2003..
[5] Kevin Matocha,T.Paul Chow and and Ronald J. Gutmann , “High -Voltage Normally Off GaN MOSFETs on Sapphire Substrates” IEEE Transactions on Electron Devices, vol. 52, no. 1, January 2005
[6] W. Huang, T. Khan, and T. P. Chow, “Enhancement-Mode n-Channel GaN MOSFETs on p and n-GaN/Sapphire Substrates.” IEEE Electron Device Letters,vol.27,no. 10, October 2006.
[7] Takehiko Nomura,Hiroshi Kambayashi,Yuki Niiyama Shinya Otomo and Seikoh Yoshida, “High-temperature enhancement mode operation of n-channel GaN MOSFETs on sapphire substrates.” Solid-State Electronics, 52 pp.150–155, 2008.
[8] Hiroshi Kambayashi, Yuki Niiyama, Shinya Ootomo, Takehiko Nomura, Masayuki Iwami Yoshihiro Satoh, Sadahiro Kato, and Seikoh Yoshida“Normally Off n-Channel GaN MOSFETs on Si Substrates Using an SAG Technique and Ion Implantation.” IEEE Electron Device Letters, vol. 28,pp.1077-1079, December 2007.
[9] Kazuki Yamaji, Masato Noborio, Jun Suda, and Tsunenobu Kimoto,“Improvement of Channel Mobility in Inversion-Type n-Channel GaN Metal–Oxide–Semiconductor Field-Effect Transistor by High-Temperature Annealing,” Japanese Journal of Applied Physics, vol. 47, No. 10, 2008, pp. 7784–7787,2007.
[10] W. Huang, T.P. Chow, Y. Niiyama, T. Nomura and S. Yoshida, “Lateral Implanted RESURF GaN MOSFETs with BV up to 2.5 kV,” Proceedings of the 20th International Symposium on Power Semiconductor Devices & IC's,pp291-294, May 18-22, 2008.
[11] T. E. Cook, Jr., C. C. Fulton, W. J. Mecouch, K. M. Tracy, R. F. Davis, E. H. Hurt, G.Lucovsky and R. J. Nemanich, “Measurement of the band offsets of SiO2 on n- and p-type GaN (0001)”, Journal of Applied Physics, vol. 93, pp. 3995-4004, 2003.
[12] T. S. Lay, M. Hong, J. Kwo, J. P. Mannaerts, W. H. Hung and D. J. huang,“Energy-band parameters at the GaAs- and GaN-Ga2O3 (Gd2O3) interfaces,” Solid-State Electronics, vol. 45, pp. 1679-1682, 2001.
[13] Dieter K. Schroder, “Semiconductor material and device characterization, Third edition,” John Wiley & Sons, Inc.,2005.
[14] J.D.Plummer, M.D. Deal, and P. B. Griffin, “Silicon VLSI Technology -Fundamentals, Practice and Modeling,” Prentice Hall, 2000.
[15] E. H. Nicolian, and J. R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology,” John Wiley & Sons, Inc., 1982.
[16] H. H. Tan, J. S. Williams, J. Zou, D. J. H. Cockayne, S. J. Pearton, J. C. Zolper and R. A. Stall, “Annealing of ion implanted gallium nitride,” Applied physics Letters, vol. 72, Number 10, March 1998
[17] Nalin Parikh,Agajan Suvhanov,Mike Lioubtchenko,Eric Carlson, Michael Bremser,David Bray and Robert Dvis, “ion implanted of Epitaxial GaN Films: Damage,doping and activation ,”Nuc,Instr. And Meth, March,1996.
[18] William Liu, “Fundamentals of III-V devices,” John Wiley & Sons, Inc., 1999.
[19] Weixiao Huang, “High-Voltage Lateral MOS-Gated FETs in Gallium Nitride,” Rensselaer Polytechnic Institute, Troy, New York. April, 2008.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊