跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 09:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉凌彥
研究生(外文):Yeh, Ling-Yen
論文名稱:應用於金氧半電晶體的鋁酸鑭閘極介電層及應變矽技術之研究
論文名稱(外文):LaAlO3 Gate Dielectric and Strained Silicon Technologies for Metal-Oxide-Semiconductor Field Effect Transistor Applications
指導教授:葉鳳生李雅明李雅明引用關係
指導教授(外文):Yeh, Fon-ShanLee, Joseph Ya-Min
學位類別:博士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:98
中文關鍵詞:高介電常數介電質閘極氧化層應變矽鋁酸鑭金氧半電晶體
外文關鍵詞:high-k dielectricgate dielectricstrained siliconLaAlO3MOSFET
相關次數:
  • 被引用被引用:0
  • 點閱點閱:284
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:1
自從1958年, 全世界第一個積體電路 (integrated circuit) 問世以來,今天的積體電路已經廣泛影響到人類的日常生活,並且大量的應用於電腦運算、通訊系統、影音處理、交通運輸、醫療設備等項目。大部份的積體電路都是由矽金氧半電晶體 (silicon metal-oxide-semiconductor field-effect transistor) 所組成的。隨著技術的演進,金氧半電晶體的尺寸可以縮小,因此單位面積的電晶體數目會隨之增多。
1960年代初期高登摩爾 (Gordon Moore) 預測單位面積的電晶體數目每十八到二十四個月會增加一倍。當金氧半電晶體的通道長度小於約五十奈米時,要繼續跟隨摩爾定律的預測,最需要解決兩個問題,其一是如何用高介電常數介電層取代傳統的二氧化矽以降低閘極漏電流,其二是如何使載子在通道的遷移率藉由應變而增加,進而增加元件的速度。因此,這篇論文就以這兩個問題為主軸,對高介電常數鋁酸鑭介電層 (high dielectric constant LaAlO3 gate dielectric) 的可靠度及應變矽 (strained silicon) 效應隨通道尺寸的變化做研究和探討。
在論文的第一部份,高介電常數鋁酸鑭介電層的可靠度,我們製作了以鋁酸鑭為閘極介電層的n 型電容器和金氧半電晶體。量測鋁酸鑭介電層的元件可靠度包括定電壓下的介電層崩潰 (time dependent dielectric breakdown)、定電壓下介電層崩潰前漏電流隨時間的變化 (stress induced leakage current) 和臨界電壓 (threshold voltage) 在閘極正偏壓下隨時間的變化 (positive bias temperature instability),並研究其中的物理機制。
在論文的第二部份,我們以高張應力 (tensile stress) 的氮化矽作為產生通道矽應變 (channel strain) 的來源。計算在此薄膜應力下傳送到通道的應力並比較通道應力在各種不同通道長度 (channel length) 和寬度 (channel width) 下的變化。並根據不同的載子傳輸 (carrier transport) 機制分別計算出通道電流的改變,與實際量測的結果做比較。以此判斷不同傳輸機制在各種不同通道長度和寬度下的影響。

Since the first integrated circuit was created in 1958, the integrated circuit technology has widely influenced our daily life. This technology has been applied to various modern electronic devices such as computers, mobile phones, audio and video devices, medical electronics and so on. The major component of the integrated circuit is the transistor and most of the transistors used today are the metal-oxide-semiconductor field-effect transistors (MOSFETs). With the progress of process technology, the dimension of transistors shrinks and therefore the number of transistors per unit area increases in the integrated circuits accordingly. At the beginning of 1960’s, Gordon Moore forecasted that the numbers of transistors per unit area will double every eighteen to twenty four months. It becomes more difficult to follow Moore’s law when the channel length of MOSFETs shrinks below 50 nm. The two major issues of further scaling are the following, first, the appropriate high-dielectric-constant thin film to replace the traditional silicon dioxide and, secondly, the mobility of carriers in the channel needs to be enhanced by strained silicon. Therefore, this thesis focuses on these two issues. The first part of the thesis describes the reliability properties of LaAlO3 gate dielectric and the second part on the modeling of nMOSFET with strained silicon.
In the first part of this thesis, MOS capacitors and nMOSFETs with LAO gate dielectric were fabricated and various reliability properties, including time dependent dielectric breakdown, stress induced gate leakage current and positive bias temperature instability, were all studied.
In the second part of the thesis, strained n-channel MOSFETs with various channel widths and lengths were fabricated and the stresses in the channel were simulated. The enhancement of the on-state drain current in the channel was then calculated by the simulated stress in the channel and compared to the measured data.

Contents
Pages
Abstract iii
Acknowledgement v
List of tables viii
List of figures ix

Chapter 1 Introduction of nanometer-scale CMOS devices

1.1 Technology roadmap of CMOS transistors 1
1.2 Application of high-k? dielectric to MOSFETs 5
1.3 Strained MOSFETs 12
1.4 Outline of the thesis 13

Chapter 2 Fabrication of MOS capacitors and nMOSFETs with LaAlO3 gate dielectric

2.1 Deposition of LaAlO3 dielectric 17
2.2 Fabrication of MOS capacitors with LaAlO3 gate dielectric 18
2.3 Fabrication of nMOSFETs with LaAlO3 gate dielectric 22

Chapter 3 Physical and electrical properties of MOS capacitors and nMOSFETs with LaAlO3 gate dielectric

3.1 Physical properties of MOS capacitors and nMOSFETs with LaAlO3 gate dielectric 23
3.2 Electrical properties of MOS capacitors and nMOSFETs wth LaAlO3 gate dielectric 27
3.3 Electron mobility of nMOSFETs with LaAlO3 gate dielectric 31

Chapter 4 Time dependent dielectric breakdown of MOS capacitors with LaAlO3 gate dielectric

4.1 Modeling of time dependent dielectric breakdown 35
4.1.1 E model 35
4.1.2 1/E model 36
4.2 Time dependent dielectric breakdown of MOS capacitors with LaAlO3 gate dielectric 37

Chapter 5 High-voltage stress-induced leakage current of MOS capacitors with LaAlO3 dielectric

5.1 Introduction of chapter 5 45
5.2 Results and discussion 45

Chapter 6 Positive bias temperature instability of nMOSFETs with LaAlO3 gate dielectric

6.1 Introduction to bias temperature instability of nMOSTET with LaAlO3 gate dielectric 50
6.2 Positive bias temperature instability of LaAlO3 nMOSFETs with LaAlO3 gate dielectric 51
6.2.1 Electrical stress-induced defect generation
(ESIDG) in the interfaciallayer 57
6.2.2 Oxygen vacancy induced electron trapping in
LaAlO3 gate dielectric 58

Chapter 7 Modeling of the on-state current enhancement of strained nMOSFETs

7.1 The dependence of the performance of strained nMOSFETs on channel width 60
7.1.1 Calculation of effective mass 61
7.1.2 Calculation of energy band structure using k‧p
model 62
7.2 The dependence of the performance of strained nMOSFETs on channel length 71

Chapter 8 Conclusion and future study 79

Reference 82
Publication List 96

Reference
1. International Technology Roadmap for Semiconductors (ITRS), 2007, [on line]. (www.itrs.org)
2. Website of intel corporation, 2009, [on line]
(http://www.intel.com/technology/architecture-silicon/silicon.htm?iid=tech_as+silicon_headl)
3. K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C. H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. Mclntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. Troeger, P. Vandervoorn, S. Williams, and K. Zawadzki, “A 45nm Logic Technology with High-k+Metal Gate Transistors, Strained Silicon, 9 Cu Interconnect Layers, 193nm Dry Patterning, and 100% Pb-free Packaging,” in IEDM Tech. Dig., pp. 247-250, 2007.
4. J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Rep. Prog. Phys., vol. 69, pp. 327-396, Feb. 2006
5. S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C. H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, Y. El-Mansy, “A 90-nm logic technology featuring strained-silicon,” IEEE Trans. Electron Devices, vol. 51, pp. 1790–1797, Nov. 2004.
6. R. W. Mutro, M. I. Gardner, G. A. Brown, P. M. Zeitzoff, and H. R. Huff, “Challenges in gate stack engineering,” Solid State Technol., vol. 46, p. 43, 2003.
7. J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Eur. Phys. J. Appl. Phys., vol. 28, pp. 327-396, Dec. 2006
8. L. Kang, B. H. Lee, W. J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric,” IEEE Electron Device Lett., vol. 21, pp. 181-183, Apr. 2000.
9. H. S. P. Wong, “Beyond the conventional transistor,” J. IBM, vol. 46, pp. 2-3, Mar. 2002.
10. A. I. Kingon, J. P. Maria, and S. K. Streiffer, “Alternative dielectrics to silicon dioxide for memory and logic devices,” Nature, vol. 406, pp. 1032-1038, Aug. 2000.
11. K. J. Hubbard and D. G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mater. Res., vol. 11, pp. 2757-2276, Nov. 1996.
12. W. J. Zhu, T. P. Ma, S. Zafar, and T. Tamagawa, “Charge trapping in ultrathin hafnium oxide,” IEEE Electron Device Lett., vol. 23, pp. 597-599, Oct. 2002.
13. N. V. Skorodumova, R. Ahuja, S. I. Simak, I. A. Abrikosov, B. Johansson, and B. I. Lundqvist, “Electronic, bonding, and optical properties of CeO2 and Ce2O3 from first principles,” Phys. Rev. B, vol. 64, pp. 115108.1-115108.9, Sep. 2001.
14. J. C. Wang, Y. P. Hung, C. L. Lee, and T. F. Lei, “Improved characteristics of ultrathin CeO2 by using postnitridation annealing,” J. Electrochem. Soc., vol. 151, pp. F17-F21, Jan. 2004.
15. Y. Nishikawa, T. Yamaguchi, M. Yoshiki, H. Satake, and N. Fukushima, “Interfacial properties of single-crystalline CeO2 high-k gate dielectrics directly grown of Si (111),” Appl. Phys. Lett., vol. 81, pp. 4386-4388, Dec. 2002.
16. V. A. Rozhkov, V. P. Goncharov, and A. Y. Trusova, “Electrical and photoelectrical properties of MIS structures with rare earth oxide films as insulator,” Proceedings of the 1995 IEEE Conference on Conduction and Breakdown in Solid Dielectrics, pp. 552-555, 1995.
17. V. A. Rozhkov, A. I. Petrov, V. P. Goncharov and A.Y. Trusova, “Electrical breakdown of rare earth oxide insulator thin films in silicon MIS structures,” Proceeding of the 1995 IEEE Conference on Conduction and Breakdown in Solid Dielectrics, pp. 418-422, 1995.
18. V. A. Rozhkov, A. Y. Trusova, I. G. Berezhnoy, “Silicon MIS structures using samarium oxide films,” Thin Solid Films, vol. 325, pp. 151-155, Feb. 1998.
19. K. H. Kim, H. J. Won, and J. S. Choi, “Electrical conductivity of samarium sesquioxide,” J. Phys. Chem. Solids, vol. 45, pp. 1259-1264, 1984.
20. A. A. Dakhel, “Dielectric and optical properties of samarium oxide thin films,” J. Alloy. Comp., vol. 365, pp. 233-239, Aug. 2004.
21. A. D. Li, Q. Y. Shao, H. Q. Ling, J. B. Cheng, D. Wu, Z. G. Liu, N. B. Ming, C. Wang, H. W. Zhou, and B. Y. Nguyen, “Characteristics of LaAlO3 gate dielectrics on Si grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., vol. 83, pp. 3540-3542, Oct. 2003.
22. X. B. Lu, H. B. Lu, Z. H. Chen, X. Zhang, R. Huang, H. W. Zhou, X. P. Wang, B. Y. Nguyen, C. Z. Wang, W. F. Xiang, M. He, ang B. L. Cheng, “Field-effect transistors with LaAlO3 and LaAlOxNy gate dielectrics deposited by laser molecular-beam epitaxy,” Appl. Phys. Lett., vol. 85, pp. 3543-3545, Oct. 2004.
23. T. Busani and R. A. B. Devine, “Molecular volume and electronic and vibrational polarizibilities for amorphous LaAlO3,” J. Appl. Phys., vol. 96, pp. 6642-6647, Dec. 2004.
24. R. A. B. Devine, “Infrared and electrical properties of amorphous sputtered (LaxAl1-x)2O3 films,” J. Appl. Phys., vol. 93, pp. 9938-9942, Jun. 2003.
25. P. Sivasubramani, J. Kim, M. J. Kim, B. E. Gnade, and R. M. Wallace, “Effect of nitrogen incorporation on the thermal stability of sputter deposited lanthanum aluminate dielectrics on Si (100),” Appl. Phys. Lett., vol. 89, pp. 152903.1-152903.3, Oct. 2006.
26. I. Y. K. Chang, S. W. You, P. C. Juan, M. T. Wang and J. Y. M. Lee, “The Electrical and Interfacial Properties of Metal-High-κ Oxide-Semiconductor Field-Effect Transistors With LaAlO3 Gate Dielectric,” IEEE Electron Device Lett., vol. 30, pp. 161-164, Feb. 2009.
27. M. Balog, M. Schieber, M. Michman, and S. Patai, “Chemical vapor-deposition and characterization of HfO2 films from organo-hafnium compounds,” Thin Solid Films, vol. 41, pp. 247-259, Mar. 1977.
28. F. C. Chiu, S. A. Lin, J. Y. M. Lee, “Electrical properties of metal-HfO2-silicon system measured from metal-insulator-semiconductor capacitors and metal-insulator-semiconductor field-effect transistors using HfO2 gate dielectric,” Microelectronics Reliability, vol. 45, pp. 961-964, May 2005.
29. K. Karakaya, A. Zinine, J. G. M. van Berkum, M. A. Verheijen, Z. M. Rittersma, G. Rijnders, and D. H. A. Blank, “Characterization of laminated CeO2-HfO2 high-κ gate dielectrics grown by pulsed laser deposition,” J. Electrochem. Soci., vol. 153, pp. F233-F236, 2006.
30. Y. R. Hwang, I. Y. K. Chang, M. T. Wang, and J. Y. M. Lee, “The fabrication and characterization of metal-oxide-silicon capacitors and field-effect transistors using Dy2O3 and Sm2O3 gate dielectrics,” Integrated Ferroelectrics, vol. 97, pp. 111-120. 2008.
31. L. F. Edge, S. A. Chambers, E. Cicerrella, J. L. Freeouf, B. Holländer, J. Schubert, and D. G. Schlom, “Measurement of the band offsets between amorphous LaAlO3 and silicon,” Appl. Phys. Lett., vol. 84, pp. 726-728, Feb. 2004.
32. P. W. Peacock and J. Robertson, “Bonding, Energies, and band offsets of Si-ZrO2 and HfO2 gate oxide interfaces,” Phys. Revi. Lett., vol. 92, pp. 057601.1-057601.4, Feb. 2004.
33. H. W. Chen, S. Y. Chen, K. C. Chen, H. S. Huang, C. H. Liu, F. C. Chiu, K. W. Liu, K. C. Lin, L. W. Cheng, C. T. Lin, G. H. Ma, and S. W. Sun, “Electrical characterization and carrier transportation in Hf-silicate dielectrics using ALD gate stacks for 90 nm node MOSFETs,” Appl. Surf. Scie., vol. 254, pp. 6127-6130, 2008.
34. F. C. Chiu, “Current conduction mechanisms in CeO2 thin films,” Electrochem. and Solid State Lett., vol. 11, pp. H135-H137, 2008.
35. V. A. Rozhkov, A. Y. Trusova, and I. G. Berezhnoi, “Energy barriers and trapping centers in silicon metal-insulator-semiconductor structures with samarium and ytterbium oxide insulators,” Tech. Phys. Lett., vol. 24, pp. 217-219, Mar. 1998.
36. X. B. Lu, Z. G. Liu, Y. P. Wang, Y. Yang, X. P. Wang, H. W. Zhou, and B. Y. Nguyen, “Structure and dielectric properties of amorphous LaAlO3 and LaAlOxNy films as alternative gate dielectric materials,” J. Appl. Phys., vol. 94, pp. 1229-1234, Jul. 2003.
37. J. Robertson and B. Falabretti, “Band offset of high-κ gate oxides on III-V semiconductors,” J. Appl. Phys., vol. 100, pp. 014111.1-014111.8, Jul. 2006.
38. E. Cicerrella, J. L. Freeouf, L. F. Edge, D. G. Schlom, T. Heeg, J. Schubert, and S. A. Chambers, “Optical properties of La-based high-κ dielectric films,” J. Vac. Sci. Technol. A, vol. 23, pp. 1676-1680, Oct. 2005.
39. A. Pfau and K. D. Schierbaum, “The electronic structure of stoichiometric and reduced CeO2 surfaces-an XPS, UPS and HREELS study,” Surface Science, vol. 321, pp. 71-80, Dec. 1994.
40. K. Karakaya, B. Barcones, Z. M. Rittersma, J. G. M. van Berkum, M. A. Verheijen, G. Rijnders, and D. H. A. Blank, “Electrical and structural characterization of PLD grown CeO2–HfO2 laminated high-κ gate dielectrics,” Mater. Sci. Semi. Pro. 9, pp. 1061-1064, Dec. 2006.
41. D. A. Neumayer and E. Cartier, “Materials characterization of ZrO2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition,” J. Appl. Phys., vol. 90, pp. 1801-1808, Aug. 2001.
42. H. Kim, P. C. Mclntyre, and K. C. Saraswat, “Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition,” Appl. Phys. Lett., vol. 82, pp. 106-108, Jan. 2003.
43. H. Wang, Y. Wang, J. Feng, C. Ye, B. Y. Wang, H. B. Wang, Q. Li, Y. Jiang, A. P. Huang, and Z. S. Xiao, “Structure and electrical properties of HfO2 high-κ films prepared by pulsed laser deposition on Si (100),“ Appl. Phys. A, vol. 93, pp. 681-684, Jun. 2008.
44. D. F. Yang and L. J. Xue, “Charge trapping in and electrical properties of pulsed laser deposited Sm2O3 films,” J. Appl. Phys., vol. 93, pp. 9389-9391, Jun. 2003.
45. X. B. Lu, X. Zhang, R. Huang, H. B. Lu, Z. H. Chen, W. F. Xiang, M. He, B. L. Cheng, H. W. Zhou, X. P. Wang, and C. Z. Wang, “Thermal stability of LaAlO3/Si deposited by laser molecular-beam epitaxy,” Appl. Phys. Lett., vol. 84, pp. 2620-2622, Apr. 2004.
46. H. H. Hall, J. Bardeen and G. L. Pearson, “The Effects of Pressure and Temperature on the Resistance of p-n Junctions in Germanium,” Phys. Rev., vol. 84, pp. 129-132, Oct. 1951.
47. C. S. Smith, “Piezoresistance Effect in Germanium and Silicon,” Phys. Rev., vol. 94, pp. 42-49, Apr. 1954.
48. H. M. Manasevit, I. S. Gergis, and A. B. Jones, “Electron mobility enhancement in epitaxial multilayer Si-Si1−xGex alloy films on (100) Si,” Appl. Phys. Lett., vol. 41, pp. 464-466, Sep. 1982.
49. R. People, J. C. Bean, D. V. Lang, A. M. Sergent, H. L. Stormer, K. W. Wecht, R. T. Lynch, and K. Baldwin, “Modulation doping in GexSi1−x/Si strained layer heterostructures,” Appl. Phys. Lett., vol. 45, pp. 1231-1233, Dec. 1984.
50. Y. Sun, S. E. Thompson, and T. Nishida, “Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors,” J. Appl. Phys. vol. 101, p.p. 104503.1-104503.22, May 2007
51. W. Zhang and J. G. Fossum, “On the threshold Voltage of strained-Si-Si1-xGex MOSFETs,” IEEE Trans. Electron Devices, vol. 52, pp. 263-268, Feb. 2005.
52. J. S. Lim, S. E. Thompson and J. G. Fossum, “Comparison of threshold-voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs,” IEEE Electron Device Lett., vol. 25, pp. 731-733, Nov. 2004.
53. S. E. Thompson, G. Sun, Y. S. Choi, and T. Nishida, “Uniaxial-process-induced strained-Si: extending the CMOS roadmap,” IEEE Trans. Electron Devices, vol. 53, pp. 1010-1020, May 2006.
54. M. T. Wang, B. Y. Y. Cheng, and J. Y. M. Lee, “Temperature-dependent degradation mechanisms of channel mobility in ZrO2-gated n-channel metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 88, pp. 242905.1-242905.3, Jun. 2006.
55. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFETs 1. Effects of substrate impurity concentration,” IEEE Trans. Electron Devices, vol. 41, pp. 2357-2362, Dec. 1994
56. M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with high-κ insulator: the role of remote phonon scattering,” J. Appl. Phys., vol. 90, pp. 4587-4608, Nov. 2001.
57. J. W. McPherson and H. C. Mogul “Underlying physics of the thermochemical E model in describing low-field time-dependent dielectric breakdown in SiO2 thin films,” J. Appl. Phys. vol. 84, pp. 1513-1523, Aug. 1998.
58. T. Tomita, H. Utsunomiya, Y. Kamakura, and K. Taniguchi, “Hot hole induced breakdown of thin silicon dioxide films,” Appl. Phys. Lett. vol. 71, pp. 3664-3666, Dec. 1997.
59. K. F. Schuegraf, and C. Hu, “Hole injection SiO2 breakdown model for very low voltage lifetime extrapolation,” IEEE Trans. Electron Devices, vol. 41, pp. 761-767, May 1994.
60. J. H. Stathis, “Percolation models for gate oxide breakdown,” J. Appl. Phys. vol. 86, pp. 5757-5766, Nov. 1999.
61. R. Degraeve, G. Groeseneken, R. Bellens, M. Depas, and H. E. Maes, “ A consistent model for the thickness dependence of intrinsic breakdown in ultra-thin oxides,“ in IEDM Tech. Dig., pp. 863-866, 1995.
62. J. Sune, “New physics-based analytic approach to the thin-oxide breakdown statistics,” IEEE Electron Device Lett., vol. 22, pp. 296-298, Jun., 2001.
63. M. Niwa, Y. Harada, K. Eruguchi and D. L. Kwong, in ULSI process integration II, edited by C. L. Claeys, F. Gonzalez, J. Murota and K. Sawaswat. pp. 519-533, 2001.
64. J. Wu, L. F. Register and E. Rosenbaum, “Trap-assisted tunneling current through ultra-thin oxide,” Proceedings of the IEEE-IRPS, pp. 389-395, 1999.
65. F. Crupi, R. Degraeve, A. Kerber, D. H. Kwak, and G. Groeseneken, “Correlation between Stress-Induced Leakage Current (SILC) and the HfO2 bulk trap density in a SiO2/HfO2 stack,” Proceedings of the IEEE-IRPS, pp. 181-187, 2004.
66. S. Takagi, N. Yasuda and A. Toriumi, “A new I-V model for stress-induced leakage current including inelastic tunneling,” IEEE Trans. Electron Devices Lett. vol. 46, pp. 348-354, Feb. 1999.
67. E. Fred Schubert, Light-Emitting Diodes, 2nd ed., New York: Cambridge, 2006, p. 28.
68. B. E. Deal, M. Sklar, A. S. Groove and E. H. Snow, “Characteristics of the Surface-State Charge (Qss) of Thermally Oxidized Silicon,” J. Electrochem. Soc. vol. 114, pp. 266-274, Mar. 1967.
69. K. O. Jeppson and C. M. Svensson, “Negative bias stress of MOS devices at high electric fields and degradation of MNOS devices,” J. Appl. Phys. vol. 48 p. 2004, May 1977.
70. S. Ogawa and N. Shiono, “Generalized diffusion-reaction model for the low-field charge-buildup instability at the Si-SiO2 interface” Phys. Rev. B 51, pp. 4218–4230, Feb. 1995.
71. S. M. Sze, Physics of semiconductor Devices, 2nd ed., New York: Wiley, 1981, p. 451.
72. P. K. Nauta and M. W. Hillen, “Investigation of mobile ions in MOS structures using the TSIC method,” J. Appl. Phys. vol. 49, no. 5 pp. 2862-2865, May 1978.
73. E. H. Snow, A. S. Grove, B. E. Deal, and C. T. Sah, “Ion transport phenomena in insulating films,” J. Appl. Phys. vol. 36, no. 5, pp. 1664-1673, May 1965.
74. S. Zafar, A. Callegari, E. Gusev, M. V. Fischetti, “Charge trapping related threshold voltage instabilities in high permittivity gate dielectric stacks,” J. Appl. Phys., vol. 93, pp. 9298-9303, Jun. 2003.
75. N. Sa, J. F. Kang, H. Yang, X. Y. Liu, Y. D. He, R. Q. Han, C. Ren, H. Y. Yu, D. S. H. Chan, D. L. Kwong, “Mechanism of positive-bias temperature instability in sub-1-nm TaN/HfN/HfO2 gate stack with low preexisting traps,” IEEE Electron Device Lett., vol. 26, pp. 610-612, Sep. 2005.
76. S. Kalpat, H H. Tseng, M. Ramon, M. Moosa, D. Tekleab, P. J. Tobin, D. C. Gilmer, R. I. Hegde, C. Capasso, C. Tracy, B. E. White, Jr., “BTI characteristics and mechanisms of metal gated HfO2 films with enhanced interface/bulk process treatments,” IEEE Trans. Devices and Materials Reliability, vol. 5, pp. 26-35, Mar. 2005.
77. P. J. McWhorter and P. S. Winokur, “Simple technique for separating the effects of interface traps and trapped-oxide charge in metal-oxide-semiconductor transistors,“ Appl. Phys. Lett., vol. 48, pp. 133-135, Oct. 1986.
78. Z. Ce, J. F. Zhang, M. H. Chang, A. R. Peaker, S. Hall, G. Froesseneken, L. Pantisano, S. D. Gendt and M. Heyns, “Stress-Induced Positive Charge in Hf-Based GateDielectrics: Impact on Device Performance and a Framework for the Defect,” IEEE Trans. Electron Devices, vol. 55, pp. 1647-1656, Jul. 2008.
79. T. P. Chen, “A simple technique to determine barrier height change in gate oxide caused by electrical stress,“ IEEE Trans. Electron Devices, vol. 49, pp. 1493-1496, Aug. 2002.
80. A. A. Korkin, G. I. Bersucker and H. R. Huff, “Atomistic model of electric stress induced defect generation in silicon oxide,” Comput. Mater. Sci., vol. 24, pp. 223-228, 2002.
81. G. Bersuker, Y. Jeon, G. Gale, J. Guan and H. R. Huff, “Modeling trap generation process in thin oxides,” IRW Final Report, pp. 107-111, 2000.
82. G. Bersuker, J. H. Sim, C. S. Park, C. D. Young, S. V. Nadkarni, R. Choi and B. H. Lee, “Mechanism of electron trapping and characteristics of traps in HfO2 gate stacks,” IEEE Trans. Device Mater. Rel., vol. 7, pp. 138-145, Mar. 2007.
83. K. Xiong, J. Robertson, and S. J. Clark, "Defect states in the high-dielectric-constant gate oxide LaAlO3," Appl. Phys. Lett., vol. 89, pp. 022907.1-022907.3, Jul. 2006.
84. E. P. Gusev, “Charge trapping in aggressively scaled metal gate/high-k stacks,” in IEDM Tech. Dig., pp. 729-732, 2004.
85. S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe, S. Satoh, M. Kase, K. Hashimoto, T. Sugii, ”MOSFET current drive optimization using silicon nitride capping layer for 65-nm technology node,” in VLSI Symp. Tech. Dig., pp. 54-55, 2004.
86. S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C. H. Jan, C. Kenyon, J. Klaus, K. Kuhn, M. Zhiyong B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, Y. El-Mansy, “A 90-nm logic technology featuring strained silicon,” IEEE Trans. Electron Devices, vol. 51, pp. 1790–1797, Nov. 2004.
87. A. Oishi, O. Fujii, T. Yokoyama, K. Ota, T. Sanuki, H. Inokuma, K. Eda, T. Idaka, H. Miyajima, S. Iwasa, H. Yamasaki, K. Oouchi, K. Matsuo, H. Nagano, T. Komoda, Y. Okayama, T. Matsumoto, K. Fukasaku, T. Shimizu, K. Miyano, T. Suzuki, K. Yahashi, T. Horiuchi, Y. Takegawa, K. Saki, S. Mori, K. Ohno, I. Mizushima, M. Saito, M. Iwai, S. Yamada, N. Nagashima, F. Matsuoka, “High performance CMOSFET technology for 45nm generation and scalability of stress-induced mobility enhancement technique, in IEDM Tech. Dig., pp. 229~232, 2005.
88. M. H. Liao, L. Y. Yeh, T. L. Lee, C. W. Liu, and M. S. Liang Liao, “Superior nMOSFET performance by optimal stress design,” IEEE Electron Device Lett., vol. 29, pp. 402-404, Apr. 2008.
89. C. C. Wu, Y. K. Leung, C. S. Chang, M. H. Tsai, H. T. Huang, D. W. Lin, Y. M. Sheu, C. H. Hsieh, W. J. Liang, L. K. Han, W. M. Chen, S. Z. Chang, S. Y. Wu, S. S. Lin, H. C. Lin, C. H. Wang, P. W. Wang, T. L. Lee, C. Y. Fu, C. W. Chang, S. C. Chen, S. M. Jang, S. L. Shue, H. T. Lin, Y. C. See, Y. J. Mii, C. H. Diaz, B. J. Lin, M. S. Liang, Y. C. Sun, “A 90-nm CMOS device technology with high-speed, general-purpose, and low-leakage transistors for system on chip applications,” in IEDM Tech. Dig., pp. 65-68, 2002.
90. C. H. Yu, M. H. Chi, Y. H. Liou, Y. L. Tu, C. S. Wu, Y. S. Chen, C. Y. Pai, and C. S. Tsai, “Plasma charging defect characterization, inspection, and monitors in poly-buffered STI,” IEEE Trans. Semiconductor Manufacturing, vol. 15, pp. 478-485, Nov. 2002.
91. ANSYS complete user’s manual, ANSYS Incorporation, Canonsburg, PA. 2004, p. 22, ver. 9.0.
92. M. H. Liao, C. W. Liu, L. Yeh, T.-L. Lee, and M.-S. Liang, "Gate width dependence on backscattering characteristics in the nanoscale strained complementary metal-oxide-semiconductor field-effect transistor," Appl. Phys. Lett., vol. 92, pp. 063506.1-063506.3, Feb. 2008.
93. K. Uchida, T. Krishnamohan, K.C. Saraswat, and Y. Nishi, “Physical mechanisms of electron mobility enhancement in uniaxial stressed NMOSFETs and impact of uniaxial stress engineering in ballistic regime,” in IEDM Tech. Dig., pp. 129-132, 2007.
94. S. I. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons, “Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal–oxide–semiconductor field-effect transistors,” J. Appl. Phys. vol. 80, pp. 1567-1577, Apr. 1996.
95. O. Bonno, S. Barraud, F. Andrieu, D. Mariolle, F. Rochette, M. Casse, J. M. Hartmann, F. Bertin and O. Faynot, “High-Field Electron Mobility in Biaxially-tensile Strained SOI: Low Temperature Measurement and Correlation with the Surface Morphology,” in Symp. VLSI Tech. Dig. pp. 134-135, 2007.
96. M. V. Fischetti and S. E. Laux, “Monte Carlo study of electron transport in silicon inversion layers,” Phys. Rev. B, vol. 48, pp. 2244-2274, Jul. 1993.
97. P. R. Chidambaram, C. Bowen, S. Chakravarthi, C. Machala and R. Wise, “Fundamentals of silicon material properties for successful exploitation of strain engineering in modern CMOS manufacturing,” IEEE Trans. Electron Devices, vol. 53, pp. 944-964, May 2006.
98. Y. Taur and T. H. Ning, Fundamentals of modern VLSI devices, New York: Cambridge, 2002, p. 423.
99. M. Lundstrom, “Elementary scattering theory of the Si MOSFET” IEEE Electron Device Lett., vol.18, pp. 361-363, July, 1997.
100. M. Lundstrom, “On the mobility versus drain current relation for a nanoscale MOSFET,” IEEE Electron Device Lett., vol.22, pp. 293-295, Jun. 2001.
101. M.-J. Chen, H.-T. Huang, K.-C. Huang, P.-N. Chen, C.-S. Chang and C. H. Diaz, “Temperature dependent channel backscattering coefficients in nanoscale MOSFETs” in IEDM Tech. Dig., pp. 39-42, 2002.
102. L. F. Edge, T. Ohashi, T. Kubota, and A. Nakajima, “Ar Annealing for Suppression of Gate Oxide Thinning at Shallow Trench Isolation,” IEEE Electron Device Lett., vol.22, pp. 562-564, July, 2007.
103. A. H. Perera, J.-H. Lin, Y.-C. Ku, M. Azrak, B. Taylor, J. Hayden, M. Thompson, and M. Blackwell, “Trench isolation for 0.45 μm active pitch and below,” in IEDM Tech. Dig., pp. 679-682, 1995.
104. W. Tonti, R. Bolam, and W. Hansch, “Impact of shallow trench isolation on reliability of buried- and surface-channel sub-μm PFET,” in IRPS Proc., pp. 24~29, 1995.
105. M. L. Lee and E. A. Fitzgerald, “Hole mobility enhancements in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1-xGex,” J. Appl. Phys., vol. 94, pp. 2590-2596, Aug. 2003.
106. C. G. V. de Walle, R.M. Martin, “Band line ups and deformation potentials in the model-solid theory,” Phys. Rev. B vol. 39, pp.1871-1883, Jan. 1989.
107. C. Ohler, C. Daniels, A. Foster and H. Luth, “Heterojunction band offsets and Schottky-barrier heights: Tersoff’s theory in the presence of strain,” Phys. Rev. B vol. 58, pp. 7864-7871, 1998.
108. R. Hull, EMIS Data Reviews Series, no. 20, Properties of crystalline silicon, Materials Research Society, 1999, p. 404.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊