|
REFERENCE
[1] The International Technology Roadmap for Semiconductors 2009 (ITRS). [2] M. M. Pelella and J. G. Fossum, “On the performance advantage of PD/SOI CMOS with floating bodies,” IEEE Trans. Electron Devices, vol. 49, pp. 96-104, Jan. 2002. [3] D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokor, and C. Hu, “FinFET: a self-aligned double-gate MOSFET scalable to 20 nm, ” IEEE Trans. Electron Devices, vol. 47, pp. 2320-2325, Dec. 2000. [4] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” in Nature, 1999, pp. 758-761. [5] M. Bohr, “Intel’s 90 nm logic technology using strained silicon transistors,” in IEDM Tech. Dig., 2003. [6] S. Zhu, H. Y. Yu, S. J. Whang, J. H. Chen, C. Shen, C. Zhu, S. J. Lee, M. F. Li, D. S. H. Chan, W. J. Yoo, A. Du, C. H. Tung, J. Singh, A. Chin, and D. L. Kwong, “Schottky barrier S/D MOSFETs with high-k gate dielectrics and metal-gate electrode,” IEEE Electron Device Lett., vol. 25, pp. 268-270, May. 2004. [7] J. Kedzierski, P. Xuan, E. Anderson, J. Bokor, T. J. King, and C. Hu, “Complementary silicide source/drain thin-body MOSFETs for the 20 nm gate length regime, ” in IEDM Tech. Dig., 2000, pp. 57-60. [8] G. Larrieu and E. Dubois, “Integration of PtSi-based Schottky barrier p-MOSFETs with a midgap tungsten gate,” IEEE Trans. Electron Devices, vol. 52, pp. 2720-2726, Dec. 2005. [9] C. Wang, J. P. Snyder, and J. R. Tucker, “Sub-40 nm PtSi Schottky source/drain metal-oxide-semiconductor field-effect transistors, ” Appl. Phys. Lett., vol. 74, pp. 1174-1176, Feb. 1999. [10] M. P. Lepselter and S. M. Sze, “SB-IGFET: An insulated-gate field-effect transistor using Schotky barrier contact for source and drain,” in Proceedings of the IEEE, vol. 56, pp. 1400-1402, 1968. [11] D. Kahng and M. M. Atalla, “Silicon-Silicon Dioxide field induced devices,” in Device Research Conf., 1960. [12] J. P. Snyder, C. R. Helms, and Y. Nishi, “Experimental investigation of a PtSi source and drain field emission transistor,” Appl. Phys. Lett., vol. 67, pp. 1420-1422, Sep. 1995. [13] L. E. Calvet, H. Luebben, M. A. Reed, C. Wang, J. P. Snyder, and J. R. Tucker, “Suppression of leakage current in Schottky barrier metal-oxide-semiconductor field-effect transistors, ” Jpn. J. Appl. Phys., vol. 91, pp. 757-759, Jan. 2002. [14] W. Saitoh, A. Itoh, S. Yamagami, and M. Asada, “Analysis of short-channel Schottky source/drain MOSFET on Silicon-on-Insulator substrate demonstration of sub-50-nm n-type devices with metal gate,” Jpn. J. Appl. Phys., part 1, vol. 38, pp. 6226-6231, Nov. 1999. [15] J. Knoch and J. Appenzeller, “Impact of the channel thickness on the performance of Schottky barrier metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., vol. 81, pp. 3082-3084, Jul. 2002. [16] M. Nishisaka, S. Matsumoto, and T. Asano, “Schottky source/drain SOI MOSFET with shallow doped extension,” Jpn. J. Appl. Phys., part 1, vol. 42, pp. 2009-2013, Dec. 2003. [17] M. Jang, Y. Kim, M.Jeon, C. Choi, B. Park, and S. Lee, “Ambipolar carrier injection characteristics of Erbium-silicided n-type Schottky barrier metal-oxide-semiconductor field-effect transistors,” Jpn. J. Appl. Phys., vol. 45, pp. 730-732, Nov. 2006. [18] D. Connelly, C. Faulkner, D. E. Grupp, and J. S. Harris, “A new route to zero-barrier metal source/drain MOSFETs,” IEEE Trans. Nanotechnol., vol. 3, pp. 98-104, 2004. [19] J. Chen S. Zhu, M. F. Li, S. J. Lee, J. Singh, C. X. Zhu, A Du, C. H. Tung, A. Chin, and D. L. Kwong, “N-type Schottky barrier source/drain MOSFET using Ytterbium silicide, ” IEEE Electron Device Lett., vol. 25, pp. 565-567, Aug. 2004. [20] A. Yagishita, T.-J. King, and J. Bokor, “Schottky barrier height reduction and drive current improvement in metal source/drain MOSFET with strained-Si channel,” Jpn. J. Appl. Phys., vol. 43, pp. 1713-1716, Apr. 2004. [21] D. E. Grupp, D. Connelly, C. Faulkner, and P. A. Clifton, “A new junction technology for low-resistance contacts and Schottky barrier MOSFETs,” In 2005 Intern. Workshop on Junction Technology, 2005. [22] D. Connelly, C. Faulkner, D. E. Grupp, and J. S. Harris, “A new route to zero-barrier metal source/drain MOSFETs,” IEEE Trans. Nanotechnol., vol. 3, pp. 98-104, 2005. [23] A. Kinoshita, Y. Tsuchiya, A. Yagishita, K. Uchida, and J. Koga, “Solution for highperformance Schottky-source/drain MOSFETs: Schottky barrier height engineering with dopant segregation technique,” In Digest of 2004 Symposium on VLSI Technology, 2004. [24] Z. Zhang, Z. Qiu, R. Liu, M. Ostling, and S. Zhang, “Schottky-barrier height tuning by means of Ion Implantation into preformed silicide films followed by drive-in anneal,” IEEE Electron Device Lett., vol. 28, pp. 565-568, July. 2007. [25] T. Yamauchi, Y. Nishi, Y. Tsuchiya, A. Kinoshita, J. Koga and K. Kato, “Novel doping technology for a 1nm NiSi/Si junction with dipoles comforting Schottky (DCS) barrier,” in IEDM Tech. Dig., 2007, pp. 963-966. [26] J. Knoch, M. Zhang, and J. Appenzeller, “On the performance of single-gated ultrathin-body SOI Schottky-barrier MOSFETs,” IEEE Trans. Electron Devices, vol. 53, pp. 1669-1674, Jul. 2006. [27] Synopsys MEDICI User‘s Manual, CA, 2006. [28] Synopsys TSUPREM-4 User’s Manual, Synopsys Inc., Mountain View, CA, 2006. [29] W. Schottky, Semiconductor theory of the barrier film, Naturwissenschaften, 1938. [30] R. S. Muller and T. I. Kamins, Device electronics for integrated circuits, Jon Wileys & Sons, 1988. [31] J. Bardeen, Surface states and rectification at a metal semiconductor contact, Phys. Rev., 1947, pp. 717-727. [32] E. H. Rhoderick and R. H. Wiliams, Metal-semiconductor contacts, Clarendon Press, 1988. [33] A. Tanabe, K. Konuma, N. Teranishi, S. Tohyama, and K. Masubuchi, “Influence of Fermi-level pinning on barrier height inhomogeneity in PtSi/p-Si Schottky contacts,” Jpn. J. Appl. Phys., vol. 69, pp. 850-853, Jan. 1991. [34] S. Xiong, T. J. King, and J. Bokor, “A comparison study of symmetric ultrathin-body double-gate devices with metal source/drain and doped source/drain,” IEEE Trans. Electron Devices, vol. 52, pp. 1859-1867, Aug. 2005. [35] J. M. Andrews and M. P. Lepselter, “Reverse current-voltage characteristics of metal-silicide Schottky diodes,” Solid-State Electronics, vol. 13, pp. 1011-1023, 1970. [36] N. Agrawal, J. Chen, Z. Hui, Y.-C. Yeo, S. Lee, D. S. H. Chan, M.-F. Li, G.. S. Samudra, “Interface barrier abruptness and work function requirements for scaling Schottky source-drain MOS transistors,” in Proc. SISPAD 2006, pp. 139-142. [37] H. A. Bethe, Theory of the boundary layer of crystal rectifiers, MIT Radiation Lab. Rep., 1942. [38] C. R. Crowell and S. M. Sze, “Current transport in Metal-Semiconductor barriers,” Solid-State Electronics, vol. 9, pp. 1035-1048, 1966. [39] C. S. Kang, H. J. Cho, K. Onishi, R. Choi, R. Nieh, S. Goplan, S. Krishnan, and J. C. Lee, “Improved thermal stability and device performance of ultrathin gate dielectrics MOSFETs by using hafnium oxynitride, ” in Symp. VLSI Tech. Dig., 2000, pp. 146-157. [40] M. Jang, J. Oh, S. Maeng, W.Cho, K. Kang, and K. Park, “Characteristics of erbium silicided n-type Schottky barrier tunnel transistors,” Appl. Phys. Lett., vol. 83, pp. 2611-2613, Aug. 2003. [41] W. Saitoh, A. Itoh, S. Yamagami, and M. Asada, “Analysis of short-channel Schottky source/drain metal-oxide-semiconductor field-effect transistor on silicon-on-insulator substrate and demonstration of sub-50-nm n-type devices with metal gate, ” Jpn. J. Appl. Phys., vol. 38, pp. 6226-6231, Aug. 1999. [42] M. C. Ozturck, “Channel, source/drain and contact engineering for 45 nm, ” Technical report, IEDM2004 Short Course. [43] J. Yuan, P. M. Zeitzoff, and J. C. S. Woo, “Source/drain parasitic resistance role and electrical couple effect in sub 50 nm MOSFET design, ” in ESSDERC Tech. Dig., 2002, pp. 503-506. [44] L. E. Calvet, H. Luebben, M. A. Reed, C. Wang, J. P. Snyder, and J. R. Tucker, “Subthreshold and scaling of PtSi Schottky barrier MOSFETs, ” Super;attics and Microstructures, 2000, pp. 501-506. [45] M. Nishisaka, S. Matsumotom, and T. Asano, “Schottky source/drain SOI MOSFET with shallow doped extension,” Jpn. J. Appl. Phys., vol. 42, pp. 2009-2013, Dec. 2003. [46] A. Kinoshita, Y. Tsuchiya, A. Yagishita, K. Uchida, and J. Koga, “Solution for high performance Schottky-source/drain MOSFETs: Schottky barrier height engineering with dopant-segregation technique,” in Symp. VLSI Tech. Dig., 2004, pp. 168-169. [47] C. H. Shih and S. P. Yeh, “Device considerations and design optimizations for dopant segregated Schottky barrier MOSFETs,” Semicond. Sci. Technol., vol. 23, Nov 2008.
[48] Z. Zhang, Z. Qiu, P.-E. Hellstrom, G. Malm, J. Olsson, J. Lu, M. Ostling, and S.-L. Zhang, “SB-MOSFETs in UTB-SOI featuring PtSi source/drain with dopant segregation,” IEEE Electron Device Lett., vol. 29, pp. 125-127, Jan. 2008. [49] Y. Taur, C. H. Wann, and D. J. Frank, “25nm CMOS design considerations, ” in IEDM Tech. Dig., 1998, pp. 789-792. [50] B. Yu, H. Wang, O. Milic, Q. Xiang, W. Wang, J. X. An, and M. R. Lin, “50nm gate-length CMOS transistor with super-halo: design, process, and reliability, ” in IEDM Tech. Dig., 1999, pp. 653-656.
|