(54.236.58.220) 您好!臺灣時間:2021/03/05 00:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊泊泓
研究生(外文):Yang, Po-Hung
論文名稱:CMOS8×8電化學多巴胺感測器與電刺激陣列
論文名稱(外文):CMOS 8×8 Electrochemical Dopamine Sensor Array with Electrical Stimulation
指導教授:盧向成
指導教授(外文):Lu, Shiang-Cheng
學位類別:碩士
校院名稱:國立清華大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:75
中文關鍵詞:電化學感測陣列類比電路多巴胺
外文關鍵詞:electrochemicalsensor arraydopamineanalog circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
近年來多巴胺量的多寡對於腦內疾病有著嚴重的影響,近年來因缺少多巴胺而產生的疾病有帕金森氏症與阿茲海默症,因此建立一個可即時監控腦內多巴胺的電子平台是我們目標。這篇論文敘述了如何大範圍感測多巴胺傳導物質與範圍性刺激細胞,使用電化學感測機制與刺激陣列晶片,並且使用微機電後製程技術整合指叉式金電極於晶片上,利用lift-off方式製作有著5 μm的間隔的電極。CMOS感測電路是電流轉電壓型態,有著1 pF的充電電容與定電壓目的的主動電流源放大器,並且有著大動態範圍。根據先前實驗結果氧化與還原電位分別為-0.2 V與+0.6 V,還原電流相對於多巴胺濃度的靈敏度約為0.25 nA⁄μM。整體功率消耗約為14.5μW。
第一章 緒論 1
1-1 研究動機 1
1-2 微機電技術簡介 3
1-3 文獻回顧 6
第二章 感測器之原理與設計 13
2-1 感測器之原理與設計 13
2-1-1 電化學氧化還原反應與感測概論 13
2-1-2 電極與電解液接面 19
2-1-3 電化學循環伏安法(Cyclic Voltammetry) 21
2-1-4 神經(Neuron) 23
2-1-5 量子釋放(Quantal Release) 26
2-1-6 感測器的設計與製作 27
2-2 電路設計與原理 31
2-2-1 感測電路系統架構簡介 31
2-2-2 感測電路穩定度分析 33
2-2-3 感測電路操作原理與分析 39
2-2-4 輸出緩衝器設計與分析 43
2-2-5 刺激端緩衝器與總輸出端緩衝器設計與分析 47
2-2-6 數位控制端設計與分析 52
2-2-7 感測電路模擬與佈局 54
第三章 量測結果 62
3-1 晶片封裝與前置作業 62
3-2 晶片量測結果 65
第四章 結論 69
4-1 研究成果與討論 69
4-2 未來工作 69
參考文獻 71

[1] S. D. Iversen and L. L. Iversen, "Dopamine: 50 years in perspective," Trends in Neurosciences, vol. 30, pp. 188-193, May 2007.
[2] G. K. Fedder, et al., "Technologies for cofabricating MEMS and electronics," Proceedings of the IEEE, vol. 96, pp. 306-322, Feb 2008.
[3] O. Brand, "Microsensor integration into systems-on-chip," Proceedings of the IEEE, vol. 94, pp. 1160-1176, Jun 2006.
[4] J. H. Smith, et al., "Embedded micromechanical devices for the monolithic integration of MEMS with CMOS," International Electron Devices Meeting, 1995 - IEDM Technical Digest, pp. 609-612, 1995.
[5] C. J. Watson, et al., "In vivo measurements of neurotransmitters by microdialysis sampling," Analytical Chemistry, vol. 78, pp. 1391-1399, Mar 2006.
[6] R. F. B. Turner, et al., "A CMOS Potentiostat For Amperometric Chemical Sensors," IEEE Journal of Solid-State Circuits, vol. 22, pp. 473-478, Jun 1987.
[7] A. J. Bard and L. R. Faulkner, Electrochemical methods : fundamentals and applications, 2nd ed. New York: Wiley, 2001.
[8] M. Schienle, et al., "A fully electronic DNA sensor with 128 positions and in-pixel A/D conversion," IEEE Journal of Solid-State Circuits, vol. 39, pp. 2438-2445, Dec 2004.
[9] H. S. Narula and J. G. Harris, "A time-based VLSI potentiostat for ion current measurements," IEEE Sensors Journal, vol. 6, pp. 239-247, Apr 2006.
[10] S. Ayers, et al., "Design of a CMOS potentiostat circuit for electrochemical detector arrays," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 54, pp. 736-744, Apr 2007.
[11] R. Genov, et al., "16-Channel integrated potentiostat for distributed neurochemical sensing," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 53, pp. 2371-2376, Nov 2006.
[12] M. M. Ahmadi and G. A. Jullien, "Current-Mirror-Based Potentiostats for Three-Electrode Amperometric Electrochemical Sensors," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 56, pp. 1339-1348, Jul 2009.
[13] K. Murari, et al., "Integrated potentiostat for neurotransmitter sensing," IEEE Engineering in Medicine and Biology Magazine, vol. 24, pp. 23-29, Nov-Dec 2005.
[14] M. Stanacevic, et al., "VLSI Potentiostat Array With Oversampling Gain Modulation for Wide-Range Neurotransmitter Sensing," IEEE Transactions on Biomedical Circuits and Systems, vol. 1, pp. 63-72, Mar 2007.
[15] A. Gore, et al., "A multichannel femtoampere-sensitivity potentiostat array for biosensing applications," IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 53, pp. 2357-2363, Nov 2006.
[16] M. Roham, et al., "Wireless Amperometric Neurochemical Monitoring Using an Integrated Telemetry Circuit," IEEE Transactions on Biomedical Engineering, vol. 55, pp. 2628-2634, Nov 2008.
[17] M. Roham, et al., "A Wireless IC for Wide-Range Neurochemical Monitoring Using Amperometry and Fast-Scan Cyclic Voltammetry," IEEE Transactions on Biomedical Circuits and Systems, vol. 2, pp. 3-9, Mar 2008.
[18] M. Roham, et al., "A Wireless IC for Time-Share Chemical and Electrical Neural Recording," IEEE Journal of Solid-State Circuits, vol. 44, pp. 3645-3658, Dec 2009.
[19] X. S. Zhu and C. H. Ahn, "On-chip electrochemical analysis system using nanoelectrodes and bioelectronic CMOS chip," IEEE Sensors Journal, vol. 6, pp. 1280-1286, Oct 2006.
[20] S. Ayers, et al., "Post-CMOS Fabrication of Working Electrodes for On-Chip Recordings of Transmitter Release," IEEE Transactions on Biomedical Circuits and Systems, vol. 4, pp. 86-92, Apr 2010.
[21] F. L. Chan, et al., "An electrochemical dopamine sensor with a CMOS detection circuit," Journal of Micromechanics and Microengineering, vol. 18, Jul 2008.
[22] W. S. Wang, et al., "Wide Dynamic Range CMOS Potentiostat for Amperometric Chemical Sensor," Sensors, vol. 10, pp. 1782-1797, Mar 2010.
[23] 詹豐林 “使用電化學法配合互補式金屬氧化半導體電路之多巴胺定量感測器”, 國立清華大學電子研究所, 民97
[24] M. Pohanka and P. Skladai, "Electrochemical biosensors - principles and applications," Journal of Applied Biomedicine, vol. 6, pp. 57-64, 2008.
[25] D. Grieshaber, et al., "Electrochemical biosensors - Sensor principles and architectures," Sensors, vol. 8, pp. 1400-1458, Mar 2008.
[26] L. C. Clark and C. Lyons, "Electrode Systems for Continuous Monitoring in Cardiovascular Surgery," Annals of the New York Academy of Sciences, vol. 102, pp. 29-&, 1963.
[27] D. A. Skoog, et al., Principles of instrumental analysis, 6th ed. Belmont, CA: Thomson Brooks/Cole, 2007.
[28] H. Suzuki, et al., "An integrated three-electrode system with a micromachined liquid-junction Ag/AgCl reference electrode," Analytica Chimica Acta, vol. 387, pp. 103-112, Apr 16 1999.
[29] S. I. Park, et al., "Application of a new Cl-plasma-treated Ag/AgCl reference electrode to micromachined glucose sensor," IEEE Sensors Journal, vol. 3, pp. 267-273, Jun 2003.
[30] B. J. Polk, et al., "Ag/AgCl microelectrodes with improved stability for microfluidics," Sensors and Actuators B-Chemical, vol. 114, pp. 239-247, Mar 30 2006.
[31] http://en.wikipedia.org/wiki/File:Neuron_Hand-tuned.svg
[32] http://en.wikipedia.org/wiki/File:Synapse_Illustration_unlabeled.svg
[33] J. N. Crawley, Current protocols in neuroscience. New York, N.Y.: J. Wiley, 1999.
[34] K. Aoki, et al., "Quantitative-Analysis of Reversible Diffusion-Controlled Currents of Redox Soluble Species at Interdigitated Array Electrodes under Steady-State Conditions," Journal of Electroanalytical Chemistry, vol. 256, pp. 269-282, Dec 9 1988.
[35] T. V. Shea and A. J. Bard, "Digital-Simulation of Homogeneous Chemical-Reactions Coupled to Heterogeneous Electron-Transfer and Applications at Platinum Mica Platinum Ultramicroband Electrodes," Analytical Chemistry, vol. 59, pp. 2101-2111, Sep 1 1987.
[36] P. R. Gray, Analysis and design of analog integrated circuits, 4th ed. New York: Wiley, 2001.
[37] W. Franks, et al., "Impedance characterization and modeling of electrodes for biomedical applications," IEEE Transactions on Biomedical Engineering, vol. 52, pp. 1295-1302, Jul 2005.
[38] E. T. McAdams, et al., "The Linear and Nonlinear Electrical- Properties of The Electrode-Electrolyte Interface," Biosensors & Bioelectronics, vol. 10, pp. 67-74, 1995.
[39] J. Kao, et al., "Subthreshold leakage modeling and reduction techniques," IEEE/ACM International Conference on Cad-02, Digest of Technical Papers, pp. 141-148, 2002.
[40] J. T. Wu, handout of Data-Conversion Integrated Circuits, Taiwan: NCTU, 2010.
[41] R. J. Baker and Institute of Electrical and Electronics Engineers., CMOS circuit design, layout, and simulation, 2nd ed. New York: IEEE Press, 2005.
[42] F. Heer, et al., "CMOS microelectrode array for the monitoring of electrogenic cells," Biosensors & Bioelectronics, vol. 20, pp. 358-366, Sep 15 2004.
[43] M. M. Mano, Digital design, 4th ed. Upper Saddle River, NJ: Prentice-Hall, 2007.
[44] C.-W. Huang and M. S.-C. Lu,” Electrochemical detection of the neurotransmitter Dopamine by nanoimprinted sub-?慆 microelectrodes and CMOS Circuitry with near 100% Collection Efficiency,” EUROSENSORS XXIV, Linz, Austria, 5-8 Sept., 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔